• Agarwal, N., , A. Köhl, , C. R. Mechoso, , and D. Stammer, 2014: On the early response of the climate system to a meltwater input from Greenland. J. Climate, 27, 82768296, doi:10.1175/JCLI-D-13-00762.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G., , V. Kharin, , and W. Merryfield, 2013: Decadal predictability and forecast skill. Climate Dyn., 41, 18171833, doi:10.1007/s00382-013-1705-0.

    • Search Google Scholar
    • Export Citation
  • Cabanes, C., , T. Huck, , and A. Colin de Verdière, 2006: Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. J. Phys. Oceanogr., 36, 17391750, doi:10.1175/JPO2935.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , and M. Alexander, 2001: Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J. Phys. Oceanogr., 31, 34963515, doi:10.1175/1520-0485(2002)031<3496:RWITTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cazes-Boezio, G., , D. Menemenlis, , and C. Mechoso, 2008: Impact of ECCO ocean-state estimates on the initialization of seasonal climate forecasts. J. Climate, 21, 19291947, doi:10.1175/2007JCLI1574.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , R. A. Deszoeke, , M. G. Schlax, , K. El Naggar, , and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., , P. L. Woodworth, , T. Aarup, , and W. S. Wilson, Eds., 2010: Understanding Sea-Level Rise and Variability. Wiley, 428 pp.

  • Delworth, T. L., , and T. R. Knutson, 2000: Simulation of early 20th century global warming. Science, 287, 22462250, doi:10.1126/science.287.5461.2246.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., , S. Yeager, , G. Danabasoglu, , W. G. Large, , and J. C. McWilliams, 2007: Mechanisms governing interannual variability of upper-ocean temperature in a global ocean hindcast simulation. J. Phys. Oceanogr., 37, 19181938, doi:10.1175/JPO3089.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and K. Hasselmann, 1977: Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., , and B. Qiu, 2002: Low-frequency variability of the North Pacific Ocean: The roles of boundary- and wind-driven baroclinic Rossby waves. J. Geophys. Res.,107, 3220, doi:10.1029/2001JC001131.

  • Goddard, L., and et al. , 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S., , and K. Bryan, 1997: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn., 13, 459487, doi:10.1007/s003820050177.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , J. Robson, , R. Sutton, , D. Smith, , and N. Keenlyside, 2011: Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Climate Dyn., 37, 24952509, doi:10.1007/s00382-011-1023-3.

    • Search Google Scholar
    • Export Citation
  • Huber, M., , and R. Knutti, 2011: Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nat. Geosci., 5, 3136, doi:10.1038/ngeo1327.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O, , S. Danilov, , D. Sidorenko, , J. Schröter, , M. Wenzel, , and D. L. Aleynik, 2008: Steric height variability in the Northern Atlantic on seasonal and interannual scales. J. Geophys. Res.,113, C11007, doi:10.1029/2008JC004836.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2003a: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33, 784801, doi:10.1175/1520-0485(2003)33<784:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2003b: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part II: Ray propagation and comparison with observations. J. Phys. Oceanogr., 33, 802821, doi:10.1175/1520-0485(2003)33<802:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, doi:10.1029/2012GL051644.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2014: Detecting the origin of interannual steric sea level changes. J. Climate, 27, 24172426, doi:10.1175/JCLI-D-13-00412.1.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., , and D. Stammer, 2008a: Decadal sea level changes in the 50-year GECCO ocean synthesis. J. Climate, 21, 18761890, doi:10.1175/2007JCLI2081.1.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., , and D. Stammer, 2008b: Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J. Phys. Oceanogr., 38, 19131930, doi:10.1175/2008JPO3775.1.

    • Search Google Scholar
    • Export Citation
  • Kröger, J., , W. A. Müller, , and J.-S. von Storch, 2012: Impact of different ocean reanalyses on decadal climate prediction. Climate Dyn., 39, 795810, doi:10.1007/s00382-012-1310-7.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 24072423, doi:10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and N. S. Keenlyside, 2011: A perspective on decadal climate variability and predictability. Deep-Sea Res. II, 58, 18801894, doi:10.1016/j.dsr2.2010.10.066.

    • Search Google Scholar
    • Export Citation
  • Laurian, A., , A. Lazar, , and G. Reverdin, 2009: Generation mechanism of spiciness anomalies: An OGCM analysis in the North Atlantic subtropical gyre. J. Phys. Oceanogr., 39, 10031018, doi:10.1175/2008JPO3896.1.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., , C. R. Mechoso, , Y. Xue, , H. Xiao, , J. D. Neelin, , and X. Ji, 2013: On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean–atmosphere–land system. J. Climate, 26, 90069025, doi:10.1175/JCLI-D-12-00819.1.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., , M. Alonso-Balmaseda, , S. Corti, , F. Molteni, , and T. Stockdale, 2013: Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate Dyn., 41, 23932409, doi:10.1007/s00382-012-1599-2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res.,102, 5753–5766, doi:10.1029/96JC02775.

  • Matei, D., , H. Pohlmann, , J. Jungclaus, , W. Müller, , H. Haak, , and J. Marotzke, 2012: Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J. Climate, 25, 85028523, doi:10.1175/JCLI-D-11-00633.1.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964, doi:10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2.

  • Mechoso, C. R., , J.-Y. Yu, , and A. Arakawa, 2001: A coupled GCM pilgrimage: From climate catastrophe to ENSO simulations. Circulation Model Development, D. A. Randall, Ed., International Geophysics Series, Vol. 70, Elsevier, 539–575, doi:10.1016/S0074-6142(00)80066-2.

  • Miles, E. R., , C. M. Spillman, , J. A. Church, , and P. C. McIntosh, 2014: Seasonal prediction of global sea level anomalies using an ocean–atmosphere dynamical model. Climate Dyn., 43, 21312145, doi:10.1007/s00382-013-2039-7.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , K. Dixon, , T. Delworth, , and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Pattullo, J., , W. Munk, , R. Revelle, , and E. Strong, 1955: The seasonal oscillation in sea level. J. Mar. Res., 14, 88155.

  • Piecuch, C., , and R. Ponte, 2011: Mechanisms of interannual steric sea level variability. Geophys. Res. Lett.,38, L15605, doi:10.1029/2011GL048440.

  • Pierce, D., , T. Barnett, , R. Tokmakian, , A. Semtner, , M. Maltrud, , J. Lysne, , and A. Craig, 2004: The ACPI project, element 1: Initializing a coupled climate model from observed conditions. Climatic Change, 62, 1328, doi:10.1023/B:CLIM.0000013676.42672.23.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., , J. Jungclaus, , A. Köhl, , D. Stammer, , and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, doi:10.1175/2009JCLI2535.1.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., , D. M. Smith, , M. A. Balmaseda, , N. S. Keenlyside, , S. Masina, , D. Matei, , W. A. Müller, , and P. Rogel, 2013: Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Climate Dyn., 41, 775785, doi:10.1007/s00382-013-1663-6.

    • Search Google Scholar
    • Export Citation
  • Polkova, I., , A. Köhl, , and D. Stammer, 2014: Impact of initialization procedures on the predictive skill of a coupled ocean–atmosphere model. Climate Dyn., 42, 31513169, doi:10.1007/s00382-013-1969-4.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 2006: Low-frequency sea level variability and the inverted barometer effect. J. Atmos. Oceanic Technol., 23, 619629, doi:10.1175/JTECH1864.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and S. Chen, 2006: Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 36, 17511762, doi:10.1175/JPO2943.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B., and et al. , 2011: Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res.,116, D22105, doi:10.1029/2011JD016263.

  • Schneider, N., 2000: A decadal spiciness mode in the tropics. Geophys. Res. Lett., 27, 257260, doi:10.1029/1999GL002348.

  • Smith, D. M., , S. Cusack, , A. Colman, , C. Folland, , G. Harris, , and J. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , R. Eade, , and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, doi:10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , N. Agarwal, , P. Herrmann, , A. Köhl, , and C. Mechoso, 2011: Response of a coupled ocean–atmosphere model to Greenland ice melting. Surv. Geophys., 32, 621642, doi:10.1007/s10712-011-9142-2.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , A. Cazenave, , R. M. Ponte, , and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, doi:10.1146/annurev-marine-121211-172406.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon. Wea. Rev., 125, 809818, doi:10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., , B. Hong, , and A. J. Clarke, 1998: Decadal wind forcing of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 28, 659668, doi:10.1175/1520-0485(1998)028<0659:DWFOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, L. A., , and C. A. Ladd, 2004: The response of the North Pacific Ocean to decadal variability in atmospheric forcing: Wind versus buoyancy forcing. J. Phys. Oceanogr., 34, 13731386, doi:10.1175/1520-0485(2004)034<1373:TROTNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vinogradova, N., , R. Ponte, , and D. Stammer, 2007: Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys. Res. Lett.,34, L03608, doi:10.1029/2006GL028588.

  • Weijer, W., , E. Muñoz, , N. Schneider, , and F. Primeau, 2013: Pacific decadal variability: Paced by Rossby basin modes? J. Climate, 26, 14451456, doi:10.1175/JCLI-D-12-00316.1.

    • Search Google Scholar
    • Export Citation
  • Yang, H., , A. Hugh, , and Z. Liu, 2003: Basin modes in a tropical–extratropical basin. J. Phys. Oceanogr., 33, 27512763, doi:10.1175/1520-0485(2003)033<2751:BMIATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., , and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34, 15281547, doi:10.1175/1520-0485(2004)034<1528:LGOSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., , A. Karspeck, , G. Danabasoglu, , J. Tribbia, , and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 5173–5189, doi:10.1175/JCLI-D-11-00595.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , and J. A. Church, 2012: Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett.,39, L21701, doi:10.1029/2012GL053240.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 14
PDF Downloads 17 17 4

Predictive Skill for Regional Interannual Steric Sea Level and Mechanisms for Predictability

View More View Less
  • 1 Institute of Oceanography, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

Based on decadal hindcasts initialized every five years over the period 1960–2000, the predictive skill of annual-mean regional steric sea level and associated mechanisms are investigated. Predictive skill for steric sea level is found over large areas of the World Ocean, notably over the subtropical Atlantic and Pacific Oceans, along the path of the North Atlantic Current, and over the Indian and Southern Oceans. Mechanisms for the predictability of the thermosteric and halosteric contributions to the steric signal are studied by separating these components into signals originating from processes within and beneath the mixed layer. Contributions originating from below the mixed layer are further decomposed into density-related (isopycnal motion term) and density-compensated (spice term) changes. In regions of the subtropical Pacific and Atlantic Oceans, predictive skill results from the interannual variability associated with the contribution from isopycnal motion to thermosteric sea level. Skill related to thermosteric mixed layer processes is found to be important in the subtropical Atlantic, while the spice contribution shows skill over the subpolar North Atlantic. In the subtropics, the high predictive skill can be rationalized in terms of westward-propagating baroclinic Rossby waves for a lead time of 2–5 yr, as demonstrated using an initialized Rossby wave model. Because of the low Rossby wave speed in high latitudes, this process is not separable from the persistence there.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00811.s1.

Corresponding author address: Iuliia Polkova, Institute of Oceanography, Center for Earth System Research and Sustainability, University of Hamburg, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: iuliia.polkova@uni-hamburg.de

Abstract

Based on decadal hindcasts initialized every five years over the period 1960–2000, the predictive skill of annual-mean regional steric sea level and associated mechanisms are investigated. Predictive skill for steric sea level is found over large areas of the World Ocean, notably over the subtropical Atlantic and Pacific Oceans, along the path of the North Atlantic Current, and over the Indian and Southern Oceans. Mechanisms for the predictability of the thermosteric and halosteric contributions to the steric signal are studied by separating these components into signals originating from processes within and beneath the mixed layer. Contributions originating from below the mixed layer are further decomposed into density-related (isopycnal motion term) and density-compensated (spice term) changes. In regions of the subtropical Pacific and Atlantic Oceans, predictive skill results from the interannual variability associated with the contribution from isopycnal motion to thermosteric sea level. Skill related to thermosteric mixed layer processes is found to be important in the subtropical Atlantic, while the spice contribution shows skill over the subpolar North Atlantic. In the subtropics, the high predictive skill can be rationalized in terms of westward-propagating baroclinic Rossby waves for a lead time of 2–5 yr, as demonstrated using an initialized Rossby wave model. Because of the low Rossby wave speed in high latitudes, this process is not separable from the persistence there.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00811.s1.

Corresponding author address: Iuliia Polkova, Institute of Oceanography, Center for Earth System Research and Sustainability, University of Hamburg, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: iuliia.polkova@uni-hamburg.de

Supplementary Materials

    • Supplemental Materials (PDF 1.81 MB)
Save