• Allan, R. P., 2006: Variability in clear-sky longwave radiative cooling of the atmosphere. J. Geophys. Res.,111, D22105, doi:10.1029/2006JD007304.

  • Allan, R. P., 2011: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteor. Appl., 18, 324333, doi:10.1002/met.285.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res.,111, D04104, doi:10.1029/2005JD006301.

  • Bony, S., , and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62, 27702789, doi:10.1175/JAS3506.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , G. Bellon, , D. Klocke, , S. Sherwood, , S. Fermepin, , and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and D. S. Battisti, 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27, 757770, doi:10.1029/1999GL010910.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , Y.-T. Hwang, , D. M. W. Frierson, , and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett.,39, L19708, doi:10.1029/2012GL053115.

  • Ceppi, P., , M. D. Zelinka, , and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, doi:10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Cesana, G., , and H. Chepfer, 2012: How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett.,39, L20803, doi:10.1029/2012GL053153.

  • Chepfer, H., , S. Bony, , D. Winker, , M. Chiriaco, , J.-L. Dufresne, , and G. Séze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, doi:10.1029/2008GL034207.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , S. Bony, , D. Winker, , G. Cesana, , J. L. Dufresne, , P. Minnis, , C. J. Stubenrauch, , and S. Zeng, 2010: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Crueger, T., , and B. Stevens, 2015: The effect of atmospheric radiative heating by clouds on the Madden–Julian oscillation. J. Adv. Model. Earth Syst.,7, 854–864, doi:10.1002/2015MS000434.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Deser, C., , and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, doi:10.1175/2008JCLI2453.1.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., , and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64, 28622880, doi:10.1175/JAS3985.1.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., , J. M. Wallace, , and I. P. Kraucunas, 2005: Tropical angular momentum balance in the NCEP reanalyses. J. Atmos. Sci.,62, 2499–2513, doi:10.1175/JAS3486.1.

  • Dufresne, J.-L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fermepin, S., , and S. Bony, 2014: Influence of low-cloud radiative effects on tropical circulation and precipitation. J. Adv. Model. Earth Syst., 6, 513–526, doi:10.1002/2013MS000288.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., , and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679, doi:10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., 1992: Comparison of 30-day integrations with and without cloud-radiation interaction. Mon. Wea. Rev., 120, 12441277, doi:10.1175/1520-0493(1992)120<1244:CODIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and D. W. J. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874, doi:10.1175/JAS-D-11-0123.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and L. M. Polvani, 2014: Southern Hemisphere cloud dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, doi:10.1175/JCLI-D-14-00113.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , L. M. Polvani, , G. Tselioudis, , Y. Wu, , and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 36883692, doi:10.1002/grl.50675.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., , P. Minnis, , B. R. Barkstrom, , V. Ramanathan, , R. D. Cess, , and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 68718 703, doi:10.1029/JD095iD11p18687.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , M. Ockert-Bell, , and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , T. H. V. Haar, , T. L’Ecuyer, , and D. Henderson, 2013: Radiative heating characteristics of Earth’s cloudy atmosphere from vertically resolved active sensors. Geophys. Res. Lett., 40, 624630, doi:10.1002/grl.50145.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Proc. 2000 Program on Geophysical Fluid Dynamics, Woods Hole, MA, Woods Hole Oceanographic Institution, 66 pp. [Available online at http://www.gfdl.noaa.gov/cms-filesystem-action/user_files/ih/lectures/woods_hole.pdf.]

  • Highwood, E. J., , and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, doi:10.1002/qj.49712454911.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Hoskins, B. J., , and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and et al. , 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, doi:10.1007/s00382-006-0158-0.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , F. G. Rose, , D. A. Rutan, , and T. P. Charlock, 2008: Cloud effects on the meridional atmospheric energy budget estimated from Clouds and the Earth’s Radiant Energy System (CERES) data. J. Climate, 21, 42234241, doi:10.1175/2008JCLI1982.1.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and et al. , 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res.,116, D19209, doi:10.1029/2011JD016050.

  • Kraucunas, I. P., , and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropic. J. Atmos. Sci., 62, 371389, doi:10.1175/JAS-3365.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , N. B. Wood, , T. Haladay, , G. L. Stephens, , and P. W. Stackhouse, 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., , I.-S. Kang, , J.-K. Kim, , and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14 21914 233, doi:10.1029/2001JD900143.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , D. W. J. Thompson, , Y. Huang, , and M. Zhang, 2014a: Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophys. Res. Lett., 41, 16811688, doi:10.1002/2013GL059113.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , D. W. J. Thompson, , G. L. Stephens, , and S. Bony, 2014b: A global survey of the linkages between cloud vertical structure and large-scale climate. J. Geophys. Res. Atmos., 119, 37703792, doi:10.1002/2013JD020669.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manlo-Smith, , and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., , C. A. Wilson, , and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322, doi:10.1002/qj.49711347517.

    • Search Google Scholar
    • Export Citation
  • Möbis, B., , and B. Stevens, 2012: Factors controlling the position of the intertropical convergence zone on an aquaplanet. J. Adv. Model. Earth Syst, 4, M00A04, doi:10.1029/2012MS000199.

    • Search Google Scholar
    • Export Citation
  • Nam, C., , S. Bony, , J.-L. Dufresne, , and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett.,39, L21801, doi:10.1029/2012GL053421.

  • O’Gorman, P. A., , R. P. Allan, , M. P. Byrne, , and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, doi:10.1007/s10712-011-9159-6.

    • Search Google Scholar
    • Export Citation
  • Oueslati, B., , and G. Bellon, 2013: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 29312946, doi:10.1175/JCLI-D-12-00314.1.

    • Search Google Scholar
    • Export Citation
  • Philipona, R., , K. Behrens, , and C. Ruckstuhl, 2009: How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett.,36, L02806, doi:10.1029/2008GL036350.

  • Ramanathan, V., , R. D. Cess, , E. F. Harrison, , P. Minnis, , B. R. Barkstrom, , E. Ahmad, , and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Harshvardhan, , D. A. Dazlich, , and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, doi:10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , V. Ramanathan, , T. P. Barnett, , M. K. Tyree, , and E. Roeckner, 1994: Response of an atmospheric general circulation model to radiative forcing of tropical clouds. J. Geophys. Res., 99, 20 82920 845, doi:10.1029/94JD01632.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , S. Uppala, , D. Dee, , and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Slingo, A., , and J. M. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, doi:10.1002/qj.49711448209.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., , and A. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. II: Further studies. Quart. J. Roy. Meteor. Soc., 117, 333364, doi:10.1002/qj.49711749805.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, doi:10.1126/science.1237554.

  • Stevens, B., , S. Bony, , and M. Webb, 2012: Clouds On-Off Klimate Intercomparison Experiment (COOKIE). 12 pp. [Available online at http://www.euclipse.eu/downloads/Cookie.pdf.]

  • Su, W., , A. Bodas-Salcedo, , K.-M. Xu, , and T. P. Charlock, 2010: Comparison of the tropical radiative flux and cloud radiative effect profiles in a climate model with Clouds and the Earth’s Radiant Energy System (CERES) data. J. Geophys. Res.,115, D01105, doi:10.1029/2009JD012490.

  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. D. Woodworth, 2014a: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 14801493, doi:10.1175/JAS-D-13-0185.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. D. Woodworth, 2014b: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641645, doi:10.1126/science.1247660.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , and V. Ramanathan, 2003: A simple moist tropical atmosphere model: The role of cloud radiative forcing. J. Climate, 16, 20862092, doi:10.1175/1520-0442(2003)016<2086:ASMTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102–106, doi:10.1038/ngeo2345.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J., , and J. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, doi:10.1175/2009JAS3194.1.

    • Search Google Scholar
    • Export Citation
  • Zurovac-Jevtić, D., , S. Bony, , and K. Emanuel, 2006: On the role of clouds and moisture in tropical waves: A two-dimensional model study. J. Atmos. Sci., 63, 21402154, doi:10.1175/JAS3738.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 137 32
PDF Downloads 100 100 27

The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Atmospheric Circulation

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Laboratoire de Météorologie Dynamique, IPSL, CNRS, Université Pierre et Marie Curie, Paris, France
© Get Permissions
Restricted access

Abstract

The influence of clouds on the large-scale atmospheric circulation is examined in numerical simulations from an atmospheric general circulation model run with and without atmospheric cloud radiative effects (ACRE). In the extratropics of both hemispheres, the primary impacts of ACRE on the circulation include 1) increases in the meridional temperature gradient and decreases in static stability in the midlatitude upper troposphere, 2) strengthening of the midlatitude jet, 3) increases in extratropical eddy kinetic energy by up to 30%, and 4) increases in precipitation at middle latitudes but decreases at subtropical latitudes. In the tropics, the primary impacts of ACRE include 1) eastward wind anomalies in the tropical upper troposphere–lower stratosphere (UTLS) and 2) reductions in tropical precipitation. The impacts of ACRE on the atmospheric circulation are interpreted in the context of a series of dynamical and physical processes. The changes in the extratropical circulation and precipitation are consistent with the influence of ACRE on the baroclinicity and eddy fluxes of momentum in the extratropical upper troposphere, the changes in the zonal wind in the UTLS with the influence of ACRE on the amplitude of the equatorial planetary waves, and the changes in the tropical precipitation with the energetic constraints on the tropical troposphere. The results make clear that ACRE have a pronounced influence on the atmospheric circulation not only at tropical latitudes, but at extratropical latitudes as well. They highlight the critical importance of correctly simulating ACRE in global climate models.

Corresponding author address: Ying Li, Department of Atmospheric Science, Colorado State University, 3915 W. Laporte Ave., Fort Collins, CO 80521. E-mail: yingli@atmos.colostate.edu

Abstract

The influence of clouds on the large-scale atmospheric circulation is examined in numerical simulations from an atmospheric general circulation model run with and without atmospheric cloud radiative effects (ACRE). In the extratropics of both hemispheres, the primary impacts of ACRE on the circulation include 1) increases in the meridional temperature gradient and decreases in static stability in the midlatitude upper troposphere, 2) strengthening of the midlatitude jet, 3) increases in extratropical eddy kinetic energy by up to 30%, and 4) increases in precipitation at middle latitudes but decreases at subtropical latitudes. In the tropics, the primary impacts of ACRE include 1) eastward wind anomalies in the tropical upper troposphere–lower stratosphere (UTLS) and 2) reductions in tropical precipitation. The impacts of ACRE on the atmospheric circulation are interpreted in the context of a series of dynamical and physical processes. The changes in the extratropical circulation and precipitation are consistent with the influence of ACRE on the baroclinicity and eddy fluxes of momentum in the extratropical upper troposphere, the changes in the zonal wind in the UTLS with the influence of ACRE on the amplitude of the equatorial planetary waves, and the changes in the tropical precipitation with the energetic constraints on the tropical troposphere. The results make clear that ACRE have a pronounced influence on the atmospheric circulation not only at tropical latitudes, but at extratropical latitudes as well. They highlight the critical importance of correctly simulating ACRE in global climate models.

Corresponding author address: Ying Li, Department of Atmospheric Science, Colorado State University, 3915 W. Laporte Ave., Fort Collins, CO 80521. E-mail: yingli@atmos.colostate.edu
Save