• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bao, X., , and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, doi:10.1175/JCLI-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Search Google Scholar
    • Export Citation
  • Chen, H., , J. Sun, , X. Chen, , and W. Zhou, 2012: CGCM projections of heavy rainfall events in China. Int. J. Climatol., 32, 441450, doi:10.1002/joc.2278.

    • Search Google Scholar
    • Export Citation
  • Chen, J., , and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, doi:10.1175/JCLI-D-13-00479.1.

    • Search Google Scholar
    • Export Citation
  • Cui, X., , and H.-F. Graf, 2009: Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94, 4761, doi:10.1007/s10584-009-9556-8.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., , Y. Zhang, , Q. Wang, , L. Zhang, , B. Zhou, , Z. Hao, , and F. Su, 2013: Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Climate, 26, 85109, doi:10.1175/JCLI-D-11-00738.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., , and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., , G. Ren, , Z. Zhao, , Y. Xu, , Y. Luo, , Q. Li, , and J. Zhang, 2007: Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci., 24, 954971, doi:10.1007/s00376-007-0954-4.

    • Search Google Scholar
    • Export Citation
  • Dopplick, T. G., 1972: Radiative heating of the global atmosphere. J. Atmos. Sci., 29, 12781294, doi:10.1175/1520-0469(1972)029<1278:RHOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duan, A., , and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, doi:10.1007/s00382-004-0488-8.

    • Search Google Scholar
    • Export Citation
  • Duan, A., , and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 31493164, doi:10.1175/2007JCLI1912.1.

    • Search Google Scholar
    • Export Citation
  • Duan, A., , M. Wang, , Y. Lei, , and Y. Cui, 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Climate, 26, 261275, doi:10.1175/JCLI-D-11-00669.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , X. Wu, , and M. W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 36843709, doi:10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , W. B. Rossow, , and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14, 1128, doi:10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • He, J., , J. Ju, , Z. Wen, , J. , , and Q. Jin, 2007: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24, 972992, doi:10.1007/s00376-007-0972-2.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., , T. Zhou, , and J. Matsumoto, 2014: East Asian, Indochina and western North Pacific summer monsoon - An update. Asia-Pac. J. Atmos. Sci., 50, 4568, doi:10.1007/s13143-014-0027-4.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., , and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942961, doi:10.1175/2010JCLI3834.1.

    • Search Google Scholar
    • Export Citation
  • Huang, R.-H., , and L.-T. Zhou, 2002: Research on the characteristics, formation mechanism and prediction of severe climatic disasters in China (in Chinese). J. Nat. Disasters,11, 19.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and G. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jiang, L.-X., , and M.-Z. Fan, 2002: Convective clouds and mesoscale convective systems over Tibetan Plateau in summer (in Chinese). Chin. J. Atmos. Sci., 26, 263270.

    • Search Google Scholar
    • Export Citation
  • Kaiser, D. P., 2000: Decreasing cloudiness over China: An updated analysis examining additional variables. Geophys. Res. Lett., 27, 21932196, doi:10.1029/2000GL011358.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , X. Liu, , and B. Chen, 2006: Cloud type climatology over the Tibetan Plateau: A comparison of ISCCP and MODIS/TERRA measurements with surface observations. Geophys. Res. Lett., 33, L17716, doi:10.1029/2006GL026890.

    • Search Google Scholar
    • Export Citation
  • Liao, S.-S., , J.-Y. Luo, , S.-W. Shou, , and K.-P. Lin, 2007: Study on heat and water vapour transport during a rainstorm process in South China (in Chinese). J. Nanjing Inst. Meteor., 30, 107113.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922944, doi:10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , R. Zhang, , W. Qian, , Z. Luo, , and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 21642177, doi:10.1175/2010JCLI4032.1.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1977: Response of cumulus updraft and downdraft to GATE A/B-scale motion systems. J. Atmos. Sci., 34, 11631186, doi:10.1175/1520-0469(1977)034<1163:ROCUAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., , and H. R. Cho, 1973: Diagnostic determination of cumulus cloud populations from observed large-scale variables. J. Atmos. Sci., 30, 12761286, doi:10.1175/1520-0469(1973)030<1276:DDOCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., , D. P. Kaiser, , L. R. Leung, , and M. Xu, 2006: More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett., 33, L01812, doi:10.1029/2005GL024586.

    • Search Google Scholar
    • Export Citation
  • Qie, X., , X. Wu, , T. Yuan, , J. Bian, , and D. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 66126626, doi:10.1175/JCLI-D-14-00076.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, D. A. Dazlich, , and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, doi:10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., , and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., , R. Schiffer, , A. Walker, , D. Beuschel, , and M. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP): Documentation of new cloud datasets. WMO/TD-737, 115 pp. [Available online at http://isccp.giss.nasa.gov/pub/documents/d-doc.pdf.]

  • Shi, Q., , and S. Liang, 2013: Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets: I. Methodology. J. Geophys. Res. Atmos., 118, 96429657, doi:10.1002/jgrd.50720.

    • Search Google Scholar
    • Export Citation
  • Soong, S. T., , and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 20352050, doi:10.1175/1520-0469(1980)037<2035:ROTCTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., , and M. Yanai, 1986: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence. J. Atmos. Sci., 43, 16181642, doi:10.1175/1520-0469(1986)043<1618:CEEOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, S.-Y., , and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330, doi:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and et al. , 2013: Changes in extreme precipitation over northeast China, 1960–2011. Quat. Int., 298, 177186, doi:10.1016/j.quaint.2013.01.025.

    • Search Google Scholar
    • Export Citation
  • Wang, J. J., , X. Li, , and L. D. Carey, 2007: Evolution, structure, cloud microphysical, and surface rainfall processes of monsoon convection during the South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 360380, doi:10.1175/JAS3852.1.

    • Search Google Scholar
    • Export Citation
  • Wang, M., , S. Zhou, , and A. Duan, 2012: Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data. Chin. Sci. Bull., 57, 548557, doi:10.1007/s11434-011-4838-8.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , and Y. Qian, 2000: Diagnostic study of apparent heat sources and moisture sinks in the South China Sea and its adjacent areas during the onset of 1998 SCS monsoon. Adv. Atmos. Sci., 17, 285298, doi:10.1007/s00376-000-0010-0.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett., 32, L09707, doi:10.1029/2005GL022574.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1994: The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys., 32, 427476, doi:10.1029/94RG01873.

    • Search Google Scholar
    • Export Citation
  • Wen, Z., , F. Niu, , Q. Yu, , D. Wang, , W. Feng, , and J. Zheng, 2014: The role of rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of Qinghai-Tibetan plateau. Environ. Earth Sci., 71, 11951204, doi:10.1007/s12665-013-2523-8.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., 1984: The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J. Atmos. Sci., 41, 24562476, doi:10.1175/1520-0469(1984)041<2456:TNROTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., , and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., , Y. Liu, , B. He, , Q. Bao, , A. Duan, , and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , W. W. Grabowski, , and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55, 26932714, doi:10.1175/1520-0469(1998)055<2693:LTBOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , S. Park, , and Q. Min, 2008: Seasonal variation of cloud systems over ARM SGP. J. Atmos. Sci., 65, 21072129, doi:10.1175/2007JAS2394.1.

    • Search Google Scholar
    • Export Citation
  • Xia, X., 2010: Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res., 115, D00K06, doi:10.1029/2009JD012879.

    • Search Google Scholar
    • Export Citation
  • Xia, X., 2013: Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration. Ann. Geophys., 31, 795804, doi:10.5194/angeo-31-795-2013.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., , F. Wei, , G. Chen, , T. Zhang, , and L. Hu, 2010: Analysis of the 2008 heavy snowfall over South China using GPS PWV measurements from the Tibetan Plateau. Ann. Geophys., 28, 13691376, doi:10.5194/angeo-28-1369-2010.

    • Search Google Scholar
    • Export Citation
  • Xu, X., , S.-Y. Tao, , Z.-W. Wang, , L.-S. Chen, , L. Zhou, , and X.-R. Wang, 2002: The relationship between water vapor transport features of Tibetan Plateau-monsoon “large triangle” affecting region and drought-flood abnormality of China (in Chinese). Acta Meteor. Sin., 60, 257266.

    • Search Google Scholar
    • Export Citation
  • Xu, X., , L. Chen, , X. Wang, , Q. Miao, , and S. Tao, 2004: Moisture transport source/sink structure of the meiyu rain belt along the Yangtze River valley. Chin. Sci. Bull., 49, 181188.

    • Search Google Scholar
    • Export Citation
  • Xu, X., , C. Lu, , Y. Ding, , X. Shi, , Y. Guo, , and W. Zhu, 2013: What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau? Atmos. Sci. Lett., 14, 227234, doi:10.1002/asl2.444.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and R. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 3962.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and C. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305323, doi:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, doi:10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , X. Guo, , J. He, , J. Qin, , and T. Koike, 2011: On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J. Climate, 24, 15251541, doi:10.1175/2010JCLI3848.1.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , H. Wu, , J. Qin, , C. Lin, , W. Tang, , and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, doi:10.1016/j.gloplacha.2013.12.001.

    • Search Google Scholar
    • Export Citation
  • Yang, W.-Y., , D.-Z. Ye, , and G.-X. Wu, 1992: The influence of the Tibetan Plateau on the summer thermal and circulation field over East Asia. I: The humidity on the western Tibetan Plateau in the height of summer (in Chinese). Chin. J. Atmos. Sci., 16, 4151.

    • Search Google Scholar
    • Export Citation
  • Ye, D., 1981: Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 1419, doi:10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, X., , A. Gruber, , and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5, 12071222, doi:10.1175/JHM-392.1.

    • Search Google Scholar
    • Export Citation
  • You, Q., , S. Kang, , N. Pepin, , W.-A. Flügel, , Y. Yan, , H. Behrawan, , and J. Huang, 2010: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global Planet. Change, 71, 124133, doi:10.1016/j.gloplacha.2010.01.020.

    • Search Google Scholar
    • Export Citation
  • You, Q., , Y. Jiao, , H. Lin, , J. Min, , S. Kang, , G. Ren, , and X. Meng, 2014: Comparison of NCEP/NCAR and ERA-40 total cloud cover with surface observations over the Tibetan Plateau. Int. J. Climatol., 34, 25292537, doi:10.1002/joc.3852.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., , X. Zhang, , H. Wan, , and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, doi:10.1175/JCLI-3318.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2001: Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv. Atmos. Sci., 18, 10051017.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , A. Sumi, , and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, doi:10.1007/BF02973084.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. Sun, , and S. Fu, 2014: Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the mei-yu season. Adv. Atmos. Sci., 31, 139153, doi:10.1007/s00376-013-2052-0.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., , N. Zhang, , and J. Sun, 2014: Spatiotemporal variations of cloud amount over the Yangtze River delta, China. J. Meteor. Res.,28, 371380, doi:10.1007/s13351-014-3064-0.

    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., , and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhou, X.-J., , P. Zhao, , J. Chen, , L. Chen, , and W. Li, 2009: Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China,52D, 16791693, doi:10.1007/s11430-009-0194-9.

    • Search Google Scholar
    • Export Citation
  • Zhou, X.-X., , Y. Ding, , and P. Wang, 2010: Moisture transport in the Asian summer monsoon region and its relationship with summer precipitation in China. Acta Meteor. Sin.,24, 3142.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., , and S. Wang, 2001: 80a-oscillation of summer rainfall over the east part of China and East-Asian summer monsoon. Adv. Atmos. Sci., 18, 10431051.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., , Y. Liu, , and G. Wu, 2012: An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets (in Chinese). Sci. China Earth Sci., 55, 779786, doi:10.1007/s11430-012-4379-2.

    • Search Google Scholar
    • Export Citation
  • Zong, X.-M., , P.-C. Wang, , and X.-A. Xia, 2013: Variability and long-term trend of total cloud cover in China derived from ISCCP, ERA-40, CRU3, and ground station datasets. Atmos. Oceanic Sci. Lett., 6, 133137, doi:10.3878/j.issn.1674-2834.12.0100.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 7
PDF Downloads 10 10 5

Characteristics of Heat Sources and Clouds over Eastern China and the Tibetan Plateau in Boreal Summer

View More View Less
  • 1 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa
  • | 2 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

In this study, the summer clouds and precipitation over eastern China and the Tibetan Plateau (TP) are examined by analyzing the satellite observations and the apparent heat source Q1 and moisture sink Q2 computed from the NCEP–NCAR reanalysis. The vertically integrated [Q1] and [Q2] and precipitation have similar interannual variations in eastern China, revealing the important contribution from the condensation process. This relationship is weakened in east TP (ETP) because of the contribution of the surface sensible heat flux. In west TP (WTP), [Q1] is negatively correlated with precipitation because the surface sensible heat flux can be sharply weakened by the decrease of ground–air temperature difference due to rainfall. High clouds and deep convection are closely related with [Q1] and [Q2] over eastern China and ETP, while middle clouds and nimbostratus are responsible for the condensation over WTP. During the rainy summer, more convective rains and stronger upward motion appear in eastern China. Greater Q1 and Q2 and stronger upward motion present over ETP, while weaker Q1 and upward motion are observed over WTP in the rainy summer when compared to the dry summer. The cloud-water path over eastern China positively correlates with [Q1] and [Q2] over ETP. The deep convection over eastern China also positively correlates with the convection over ETP. These correlations suggest that moisture due to the evaporation of cloud water in anvil clouds detrained from the deep convection over ETP can be transported downstream and benefit the development of convection over eastern China.

Corresponding author address: Xiaoqing Wu, Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011. E-mail: wuxq@iastate.edu

Abstract

In this study, the summer clouds and precipitation over eastern China and the Tibetan Plateau (TP) are examined by analyzing the satellite observations and the apparent heat source Q1 and moisture sink Q2 computed from the NCEP–NCAR reanalysis. The vertically integrated [Q1] and [Q2] and precipitation have similar interannual variations in eastern China, revealing the important contribution from the condensation process. This relationship is weakened in east TP (ETP) because of the contribution of the surface sensible heat flux. In west TP (WTP), [Q1] is negatively correlated with precipitation because the surface sensible heat flux can be sharply weakened by the decrease of ground–air temperature difference due to rainfall. High clouds and deep convection are closely related with [Q1] and [Q2] over eastern China and ETP, while middle clouds and nimbostratus are responsible for the condensation over WTP. During the rainy summer, more convective rains and stronger upward motion appear in eastern China. Greater Q1 and Q2 and stronger upward motion present over ETP, while weaker Q1 and upward motion are observed over WTP in the rainy summer when compared to the dry summer. The cloud-water path over eastern China positively correlates with [Q1] and [Q2] over ETP. The deep convection over eastern China also positively correlates with the convection over ETP. These correlations suggest that moisture due to the evaporation of cloud water in anvil clouds detrained from the deep convection over ETP can be transported downstream and benefit the development of convection over eastern China.

Corresponding author address: Xiaoqing Wu, Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011. E-mail: wuxq@iastate.edu
Save