• Amos, C. B., , P. Audet, , W. C. Hammond, , R. Burgman, , I. A. Johanson, , and G. Blewitt, 2014: Uplift and seismicity driven by groundwater depletion in central California. Nature, 509, 483486, doi:10.1038/nature13275.

    • Search Google Scholar
    • Export Citation
  • Bond, N. E., , M. F. Cronin, , H. Freeland, , and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 3414–3420, doi:10.1002/2015GL063306.

    • Search Google Scholar
    • Export Citation
  • Borsa, A. A., , D. C. Agnew, , and D. R. Cayan, 2014: Ongoing drought-induced uplift in the western United States. Science, 345, 15871590, doi:10.1126/science.1260279.

    • Search Google Scholar
    • Export Citation
  • California Department of Water Resources, 2015: Storage in major reservoirs. Accessed 25 June 2015. [Available online at http://cdec.water.ca.gov/cgi-progs/reservoirs/STORAGE.]

  • Cayan, D., , T. Das, , D. Pierce, , T. Barnett, , M. Tyree, , and A. Gershunova, 2010: Future dryness in the southwest United States and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276, doi:10.1073/pnas.0912391107.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., , M. Hoerling, , A. AghaKouchak, , B. Livneh, , X.-W. Quan, , and J. Eischeid, 2015: How has human-induced climate change affected California drought risk? J. Climate, submitted.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B., , R. Seager, , and R. Miller, 2011: On the causes and dynamics of the early 20th century North American pluvial. J. Climate, 24, 50435060, doi:10.1175/2011JCLI4201.1.

    • Search Google Scholar
    • Export Citation
  • Cook, B., , J. E. Smerdon, , R. Seager, , and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn.,43, 2607–2627, doi:10.1007/s00382-014-2075-y.

  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., , D. L. Swain, , and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA, 112, 3931–3936, doi:10.1073/pnas.1422385112.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , and M. Rodell, 2013: Water in the balance. Science, 340, 13001301, doi:10.1126/science.1236460.

  • Funk, C., , A. Hoell, , and D. Stone, 2014: Examining the contribution of the observed global warming trend to the California droughts of 2012/13 and 2013/14 [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S11S15, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., , L. R. Leung, , J. Lu, , Y. Liu, , M. Huang, , and Y. Qian, 2014: Robust spring drying in the southwestern U.S. and seasonal migration of wet/dry patterns in a warmer climate. Geophys. Res. Lett.,41, 1745–1751, doi:10.1002/2014GL059562.

  • Griffin, D., , and K. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 9017–9023, doi:10.1002/2014GL062433.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett.,42, 1894–1902, doi:10.1002/2015GL063083.

  • Haston, L., , and J. Michaelsen, 1994: Long-term central coastal California precipitation variability and relationships to El Niño–Southern Oscillation. J. Climate, 7, 13731387, doi:10.1175/1520-0442(1994)007<1373:LTCCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herring, S. C., , M. P. Hoerling, , T. C. Peterson, , and P. A. Stott, 2014: Explaining extreme events of 2013 from a climate perspective. Bull. Amer. Meteor. Soc., 95, S1S96, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, doi:10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , A. Kumar, , and T. Xu, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , A. Kumar, , and T. Xu, 2001: Robustness of the nonlinear climate response to ENSO’s extreme phases. J. Climate, 14, 12771293, doi:10.1175/1520-0442(2001)014<1277:ROTNCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , J. Eischeid, , and J. Perlwitz, 2010: Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Climate, 23, 21312145, doi:10.1175/2009JCLI3420.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , J. Eischeid, , X. Quan, , H. Diaz, , R. Webb, , R. Dole, , and D. Easterling, 2012: Is a transition to semi-permanent drought conditions imminent in the U.S. Great Plains? J. Climate, 25, 83808386, doi:10.1175/JCLI-D-12-00449.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , J. Eischeid, , A. Kumar, , R. Leung, , A. Mariotti, , K. Mo, , S. Schubert, , and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Howitt, R. E., , J. Medellin-Azuara, , D. MacEwan, , J. R. Lund, , and D. A. Summer, 2014: Economic analysis of the 2014 drought for California agriculture. Tech. Rep., Center for Watershed Sciences, University of California, Davis, 20 pp. [Available online at https://watershed.ucdavis.edu/files/content/news/Economic_Impact_of_the_2014_California_Water_Drought.pdf.]

  • Huang, H., , R. Seager, , and Y. Kushnir, 2005: The 1976/77 transition in precipitation over the Americas and the influence of tropical SST. Climate Dyn., 24, 721740, doi:10.1007/s00382-005-0015-6.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Johnstone, J. A., , and N. J. Mantua, 2014: Atmospheric controls on northeast Pacific temperature variability and change, 1900-2012. Proc. Natl. Acad. Sci. USA, 111, 14 36014 365, doi:10.1073/pnas.1318371111.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., , M. A. Cane, , Y. Kushnir, , A. C. Clement, , M. B. Blumenthal, , and B. Rajagopalan, 1998: Analyses of global sea surface temperature: 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., , R. Seager, , A. Kaplan, , Y. Kushnir, , and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 43164321, doi:10.1175/2009JCLI2936.1.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., , J. Smerdon, , R. Seager, , and J. F. Gonzalez-Rouco, 2012: A Pacific centennial oscillation predicted by coupled GCMs. J. Climate, 25, 59435961, doi:10.1175/JCLI-D-11-00421.1.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Bovile, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149, doi:10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , Q. Zhang, , P. Peng, , and B. Jha, 2005: SST-forced atmospheric variability in an atmospheric general circulation model. J. Climate, 18, 39533967, doi:10.1175/JCLI3483.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , and J. Derome, 2004: Nonlinearity of the extratropical response to tropical forcing. J. Climate, 17, 25972608, doi:10.1175/1520-0442(2004)017<2597:NOTERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and et al. , 2014: North American climate in CMIP5 experiments. Part III: Assessment of 21st century projections. J. Climate, 27, 22302270, doi:10.1175/JCLI-D-13-00273.1.

    • Search Google Scholar
    • Export Citation
  • Mason, S., , and L. Goddard, 2001: Probabilistic precipitation anomalies associated with ENSO. Bull. Amer. Meteor. Soc., 82, 619638, doi:10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mirchi, A., , K. Madani, , M. Roos, , and D. W. Watkins, 2013: Climate change impacts on California’s water resources. Drought in Arid and Semi-Arid Regions, K. Schwabe et al., Eds., Springer, 301–319, doi:10.1007/978-94-007-6636-5_17.

  • Molod, A., , L. Takacs, , M. Suarez, , J. Bacmeister, , I. Somg, , and A. Eichmann, 2012: The GEOS-5 Atmospheric General Circulation Model: Mean climate and development from MERRA to Fortuna. NASA Tech. Rep. TM-2012-104606, Vol. 28, 117 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/tm28.pdf.]

  • Neelin, J. D., , B. Langenbrunner, , J. E. Meyerson, , A. Hall, , and N. Berg, 2013: California winter precipitation change under global warming in the Coupled Model Intercomparison Project Phase 5 ensemble. J. Climate, 26, 62386256, doi:10.1175/JCLI-D-12-00514.1.

    • Search Google Scholar
    • Export Citation
  • Peng, P., , and A. Kumar, 2005: A large ensemble analysis of the influence of tropical SSTs on seasonal atmospheric variability. J. Climate, 18, 10681085, doi:10.1175/JCLI-3314.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and et al. , 2013: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, doi:10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., , D. Parker, , E. Horton, , C. Folland, , L. Alexander, , D. Rowell, , E. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and et al. , 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. TM-2008-104606, Vol. 27, 97 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.]

  • Roeckner, E. K., and et al. , 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present day climate. Tech. Rep. 218, Max-Planck-Institut für Meteorologie, 90 pp.

  • Roeckner, E. K., and et al. , 2003: The atmospheric general circulation model ECHAM5: Part I: Model description. Tech. Rep. 349, Max-Planck-Institut für Meteorologie, 127 pp.

  • Ropelewski, C. F., , and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., , C. C. Faunt, , L. Longuevergnce, , R. C. Reedy, , W. M. Alley, , V. L. McGuire, , and P. B. McMahon, 2012: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA, 109, 93209325, doi:10.1073/pnas.1200311109.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , Y. Chang, , M. J. Suarez, , and P. J. Pegion, 2008: ENSO and wintertime extreme precipitation events over the contiguous United States. J. Climate, 21, 2239, doi:10.1175/2007JCLI1705.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , H. Wang, , R. Koster, , M. J. Suarez, , and P. Groissman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, doi:10.1175/JCLI-D-13-00360.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn-of-the-century North American drought: Dynamics, global context and prior analogues. J. Climate, 20, 55275552, doi:10.1175/2007JCLI1529.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, doi:10.1073/pnas.0910856107.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and N. Naik, 2012: A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236261, doi:10.1175/JCLI-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and M. P. Hoerling, 2014: Atmosphere and ocean origins of North American drought. J. Climate, 27, 45814606, doi:10.1175/JCLI-D-13-00329.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , C. Herweijer, , N. Naik, , and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, doi:10.1175/JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and et al. , 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , M. Ting, , C. Li, , N. Naik, , B. Cook, , J. Nakamura, , and H. Liu, 2013: Projections of declining surface-water availability for the southwestern United States. Nat. Climate Change, 3, 482486, doi:10.1038/nclimate1787.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , L. Goddard, , J. Nakamura, , N. Naik, , and D. Lee, 2014a: Dynamical causes of the 2010/11 Texas-northern Mexico drought. J. Hydrometeor., 15, 3968, doi:10.1175/JHM-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , D. Neelin, , I. Simpson, , H. Liu, , N. Henderson, , T. Shaw, , Y. Kushnir, , and M. Ting, 2014b: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, doi:10.1175/JCLI-D-14-00153.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I., , T. Shaw, , and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying mid-latitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, doi:10.1038/nclimate1591.

    • Search Google Scholar
    • Export Citation
  • Swain, D., , M. Tsiang, , M. Haughen, , D. Singh, , A. Charland, , B. Rajarthan, , and N. S. Diffenbaugh, 2014: The extraordinary California drought of 2013/14: Character, context and the role of climate change [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S3S6, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Swetnam, T. W., , and J. L. Betancourt, 1998: Mesoscale disturbance and ecological response to decadal climate variability in the American southwest. J. Climate, 11, 31283147, doi:10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vano, J. A., and et al. , 2014: Understanding uncertainties in future Colorado River streamflow. Bull. Amer. Meteor. Soc., 95, 5978, doi:10.1175/BAMS-D-12-00228.1.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., , S. Apllequist, , I. Durre, , M. J. Menne, , C. N. Williams, , C. Fenimore, , K. Gleason, , and D. Arndt, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, doi:10.1175/JAMC-D-13-0248.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and S. Schubert, 2014: Causes of the extreme dry conditions over California during early 2013 [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S7S10, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, J. L., , C. L. Castro, , and J. T. Overpeck, 2009: Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures. J. Climate, 22, 59185932, doi:10.1175/2009JCLI2905.1.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., , R. Seager, , J. T. Abatzoglou, , B. I. Cook, , J. E. Smerdon, , and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., in press.

    • Search Google Scholar
    • Export Citation
  • Wu, A., , and W. W. Hsieh, 2004: The nonlinear Northern Hemisphere winter atmospheric response to ENSO. Geophys. Res. Lett., 31, L02203, doi:10.1029/2003GL018885.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , J. Perlwitz, , and M. P. Hoerling, 2014: What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys. Res. Lett., 41, 1019–1025, doi:10.1002/2013GL058964.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like decade-to-century scale variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 793 793 160
PDF Downloads 535 535 126

Causes of the 2011–14 California Drought

View More View Less
  • 1 Lamont–Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 2 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 International Research Institute for Climate and Society, Columbia University, Palisades, New York
  • | 5 ** NOAA/Climate Prediction Center, College Park, Maryland
© Get Permissions
Restricted access

Abstract

The causes of the California drought during November–April winters of 2011/12–2013/14 are analyzed using observations and ensemble simulations with seven atmosphere models forced by observed SSTs. Historically, dry California winters are most commonly associated with a ridge off the west coast but no obvious SST forcing. Wet winters are most commonly associated with a trough off the west coast and an El Niño event. These attributes of dry and wet winters are captured by many of the seven models. According to the models, SST forcing can explain up to a third of California winter precipitation variance. SST forcing was key to sustaining a high pressure ridge over the west coast and suppressing precipitation during the three winters. In 2011/12 this was a response to a La Niña event, whereas in 2012/13 and 2013/14 it appears related to a warm west–cool east tropical Pacific SST pattern. All models contain a mode of variability linking such tropical Pacific SST anomalies to a wave train with a ridge off the North American west coast. This mode explains less variance than ENSO and Pacific decadal variability, and its importance in 2012/13 and 2013/14 was unusual. The models from phase 5 of CMIP (CMIP5) project rising greenhouse gases to cause changes in California all-winter precipitation that are very small compared to recent drought anomalies. However, a long-term warming trend likely contributed to surface moisture deficits during the drought. As such, the precipitation deficit during the drought was dominated by natural variability, a conclusion framed by discussion of differences between observed and modeled tropical SST trends.

Lamont Doherty Earth Observatory Contribution Number 7925.

Corresponding author address: Richard Seager, Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W., Palisades, NY 10964. E-mail: seager@ldeo.columbia.edu

Abstract

The causes of the California drought during November–April winters of 2011/12–2013/14 are analyzed using observations and ensemble simulations with seven atmosphere models forced by observed SSTs. Historically, dry California winters are most commonly associated with a ridge off the west coast but no obvious SST forcing. Wet winters are most commonly associated with a trough off the west coast and an El Niño event. These attributes of dry and wet winters are captured by many of the seven models. According to the models, SST forcing can explain up to a third of California winter precipitation variance. SST forcing was key to sustaining a high pressure ridge over the west coast and suppressing precipitation during the three winters. In 2011/12 this was a response to a La Niña event, whereas in 2012/13 and 2013/14 it appears related to a warm west–cool east tropical Pacific SST pattern. All models contain a mode of variability linking such tropical Pacific SST anomalies to a wave train with a ridge off the North American west coast. This mode explains less variance than ENSO and Pacific decadal variability, and its importance in 2012/13 and 2013/14 was unusual. The models from phase 5 of CMIP (CMIP5) project rising greenhouse gases to cause changes in California all-winter precipitation that are very small compared to recent drought anomalies. However, a long-term warming trend likely contributed to surface moisture deficits during the drought. As such, the precipitation deficit during the drought was dominated by natural variability, a conclusion framed by discussion of differences between observed and modeled tropical SST trends.

Lamont Doherty Earth Observatory Contribution Number 7925.

Corresponding author address: Richard Seager, Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W., Palisades, NY 10964. E-mail: seager@ldeo.columbia.edu
Save