• Barnes, E. A., , and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Blunden, J., , and D. S. Arndt, 2014: State of the climate in 2013. Bull. Amer. Meteor. Soc., 95, S1S279, doi:10.1175/2014BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., , and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, doi:10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., , P. R. Gent, , and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models? J. Climate, 27, 411425, doi:10.1175/JCLI-D-12-00759.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , D. W. J. Thompson, , and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., , and P. A. O’Gorman, 2013: Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Climate, 26, 40004016, doi:10.1175/JCLI-D-12-00262.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Delworth, T. L., , and F. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys. Res. Lett.,35, L20708, doi:10.1029/2008GL035166.

  • Delworth, T. L., and et al. , 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., , G. J. van Oldenborgh, , and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, doi:10.1175/JCLI-D-12-00490.1.

    • Search Google Scholar
    • Export Citation
  • Enderton, D., , and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611, doi:10.1175/2008JAS2680.1.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , and G. K. Vallis, 2009: An intermediate complexity climate model (ICCMp1) based on the GFDL flexible modelling system. Geosci. Model Dev., 2, 7388, doi:10.5194/gmd-2-73-2009.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, doi:10.1016/j.ocemod.2011.02.005.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , and G. K. Vallis, 2011: Mechanisms of interdecadal climate variability and the role of ocean–atmosphere coupling. Climate Dyn., 36, 289308, doi:10.1007/s00382-009-0674-9.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , T. L. Delworth, , A. J. Rosati, , S. M. Griffies, , and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, doi:10.1175/2010JPO4353.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., , and G. J. Boer, 2001: Warming asymmetry in climate change simulations. Geophys. Res. Lett., 28, 195–198, doi:10.1029/2000GL012121.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., , R. Ferrari, , and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Friedman, A. R., , Y.-T. Hwang, , J. C. H. Chiang, , and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, doi:10.1175/JCLI-D-12-00525.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , I. M. Held, , and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, doi:10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, doi:10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Tech. Rep. 7, NOAA Geophysical Fluid Dynamics Laboratory, 618 pp.

  • Griffies, S. M., and et al. , 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, doi:10.1175/JCLI-D-14-00353.1.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, D. K., , M. H. England, , A. Santoso, , and A. M. Hogg, 2013: Interhemispheric asymmetry in transient global warming: The role of Drake Passage. Geophys. Res. Lett., 40, 15871593, doi:10.1002/grl.50341.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett.,37, L09708, doi:10.1029/2010GL042873.

  • Kirtman, B. P., and et al. , 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, doi:10.1007/s00382-012-1500-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-C., , A. Rosati, , and M. J. Spelman, 2006: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the northern Atlantic. Ocean Modell., 11, 464477, doi:10.1016/j.ocemod.2005.03.003.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., , W. Park, , E. van Sebille, , M. O. Baringer, , C. Wang, , D. B. Enfield, , S. G. Yeager, , and B. P. Kirtman, 2011: What caused the significant increase in Atlantic Ocean heat content since the mid-20th century? Geophys. Res. Lett.,38, L17607, doi:10.1029/2011GL048856.

  • Locarnini, R. A., , A. V. Mishonov, , J. I. Antonov, , T. P. Boyer, , H. E. Garcia, , O. K. Baranova, , M. M. Zweng, , and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Manabe, S., , R. J. Stouffer, , M. J. Spelman, , and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J. Climate, 4, 785818, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , K. C. Armour, , J. R. Scott, , Y. Kostov, , U. Hausmann, , D. Ferreira, , T. G. Shepherd, , and C. M. Bitz, 2014: The ocean’s role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. Roy. Soc.,372A, 20130040, doi:10.1098/rsta.2013.0040.

  • Marshall, J., , J. R. Scott, , K. C. Armour, , J.-M. Campin, , M. Kelley, , and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, doi:10.1007/s00382-014-2308-0.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., , J. J. Kennedy, , N. A. Rayner, , and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., , and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, doi:10.1175/JPO-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., , O. A. Saenko, , A. M. Hogg, , and P. Spence, 2013: The role of vertical eddy flux in Southern Ocean heat uptake. Geophys. Res. Lett., 40, 54455450, doi:10.1002/2013GL057706.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., , H. L. Johnson, , and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and et al. , 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 658–740.

  • National Geophysical Data Center, 2006: 2-minute gridded global relief data (ETOPO2v2). U.S. Department of Commerce, NOAA. [Available online at http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html.]

  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate. Cambridge University Press, 688 pp.

  • Polvani, L. M., , and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1418, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., , and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., , and M. H. England, 2009: Southern Hemisphere westerly wind control over the ocean’s thermohaline circulation. J. Climate, 22, 12771286, doi:10.1175/2008JCLI2310.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , S. R. Jayne, , L. C. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Snow, K., , A. M. Hogg, , S. M. Downes, , B. M. Sloyan, , M. L. Bates, , and S. M. Griffies, 2015: Sensitivity of abyssal water masses to overflow parameterisations. Ocean Modell., 89, 84103, doi:10.1016/j.ocemod.2015.03.004.

    • Search Google Scholar
    • Export Citation
  • Spence, P., , O. A. Saenko, , W. Sijp, , and M. H. England, 2013: North Atlantic climate response to Lake Agassiz drainage at coarse and ocean eddy-permitting resolutions. J. Climate, 26, 26512667, doi:10.1175/JCLI-D-11-00683.1.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., , S. Manabe, , and K. Bryan, 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 342, 660662, doi:10.1038/342660a0.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , B. Dong, , and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett.,34, L02701, doi:10.1029/2006GL028164.

  • Thompson, D. W. J., , S. Solomon, , P. J. Kushner, , M. H. England, , K. M. Grise, , and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 18321852, doi:10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , and E. S. Sarachik, 1990: On the importance of vertical resolution in certain ocean general circulation models. J. Phys. Oceanogr., 20, 600609, doi:10.1175/1520-0485(1990)020<0600:OTIOVR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and G. K. Vallis, 2013: Ocean heat uptake in eddying and non-eddying ocean circulation models in a warming climate. J. Phys. Oceanogr., 43, 22112229, doi:10.1175/JPO-D-12-078.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 11
PDF Downloads 7 7 1

Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model

View More View Less
  • 1 Climate Change Research Centre, University of New South Wales, and ARC Centre of Excellence for Climate Systems Science, Sydney, Australia
  • | 2 Research School of Earth Sciences, Australian National University, and ARC Centre of Excellence for Climate Systems Science, Canberra, Australia
© Get Permissions
Restricted access

Abstract

Climate model projections and observations show a faster rate of warming in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). This asymmetry is partly due to faster rates of warming over the land than the ocean, and partly due to the ocean circulation redistributing heat toward the NH. This study examines the interhemispheric warming asymmetry in an intermediate complexity coupled climate model with eddy-permitting (0.25°) ocean resolution, and results are compared with a similar model with coarse (1°) ocean resolution. The models use a pole-to-pole 60° wide sector domain in the ocean and a 120° wide sector in the atmosphere, with Atlantic-like bathymetry and a simple land model. There is a larger high-latitude ocean temperature asymmetry in the 0.25° model compared with the 1° model, both in equilibrated control runs and in response to greenhouse warming. The larger warming asymmetry is caused by greater melting of NH sea ice in the 0.25° model, associated with faster, less viscous boundary currents transporting heat northward. The SH sea ice and heat transport response is relatively insensitive to the resolution change, since the eddy heat transport differences between the models are small compared with the mean flow heat transport. When a wind shift and intensification is applied in these warming scenarios, the warming asymmetry is further enhanced, with greater upwelling of cool water in the Southern Ocean and enhanced warming in the NH. Surface air temperatures show a substantial but lesser degree of high-latitude warming asymmetry, reflecting the sea surface warming patterns over the ocean but warming more symmetrically over the land regions.

Current affiliation: Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.

Corresponding author address: David Hutchinson, Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden. E-mail: david.hutchinson@geo.su.se

Abstract

Climate model projections and observations show a faster rate of warming in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). This asymmetry is partly due to faster rates of warming over the land than the ocean, and partly due to the ocean circulation redistributing heat toward the NH. This study examines the interhemispheric warming asymmetry in an intermediate complexity coupled climate model with eddy-permitting (0.25°) ocean resolution, and results are compared with a similar model with coarse (1°) ocean resolution. The models use a pole-to-pole 60° wide sector domain in the ocean and a 120° wide sector in the atmosphere, with Atlantic-like bathymetry and a simple land model. There is a larger high-latitude ocean temperature asymmetry in the 0.25° model compared with the 1° model, both in equilibrated control runs and in response to greenhouse warming. The larger warming asymmetry is caused by greater melting of NH sea ice in the 0.25° model, associated with faster, less viscous boundary currents transporting heat northward. The SH sea ice and heat transport response is relatively insensitive to the resolution change, since the eddy heat transport differences between the models are small compared with the mean flow heat transport. When a wind shift and intensification is applied in these warming scenarios, the warming asymmetry is further enhanced, with greater upwelling of cool water in the Southern Ocean and enhanced warming in the NH. Surface air temperatures show a substantial but lesser degree of high-latitude warming asymmetry, reflecting the sea surface warming patterns over the ocean but warming more symmetrically over the land regions.

Current affiliation: Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.

Corresponding author address: David Hutchinson, Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden. E-mail: david.hutchinson@geo.su.se
Save