• Aiyyer, A. R., , and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 29692983, doi:10.1175/JCLI3685.1.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., , R. W. Corell, , G. Holland, , J. W. Hurrell, , M. C. MacCracken, , and K. E. Trenberth, 2006: Hurricanes and global warming—Potential linkages and consequences. Bull. Amer. Meteor. Soc., 87, 623628, doi:10.1175/BAMS-87-5-617.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., , G. J. Holland, , and E. Towler, 2012: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 86118626, doi:10.1175/JCLI-D-11-00619.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. H. Sobel, , A. G. Barnston, , and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, doi:10.1111/j.1600-0870.2007.00238.x.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C., 2006: Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment.” Science, 311, 1713, doi:10.1126/science.1121522.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C., , and J. E. Shi, 2000: Frequency of typhoon landfall over Guangdong Province of China during the period 1470–1931. Int. J. Climatol., 20, 183190, doi:10.1002/(SICI)1097-0088(200002)20:2<183::AID-JOC479>3.0.CO;2-U.

    • Search Google Scholar
    • Export Citation
  • Chen, H.-F., and et al. , 2012: Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene. J. Quat. Sci., 27, 964972, doi:10.1002/jqs.2590.

    • Search Google Scholar
    • Export Citation
  • Denommee, K., , S. Bentley, , and A. Droxler, 2014: Climatic controls on hurricane patterns: A 1200-y near-annual record from Lighthouse Reef, Belize. Sci. Rep., 4, 3876, doi:10.1038/srep03876.

    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., , and J. D. Woodruff, 2007: Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature, 447, 465468, doi:10.1038/nature05834.

    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., and et al. , 2015: Climate forcing of unprecedented intense-hurricane activity in the last 2000 years. Earth’s Future, 3, 49–65, doi:10.1002/2014EF000274.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2, 1, doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., , and D. Nolan, 2004: Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Emanuel, K., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frappier, A., , T. Knutson, , K. B. Liu, , and K. Emanuel, 2007: Perspective: Coordinating paleoclimate research on tropical cyclones with hurricane-climate theory and modelling. Tellus, 59A, 529537, doi:10.1111/j.1600-0870.2007.00250.x.

    • Search Google Scholar
    • Export Citation
  • Gao, C., , A. Robock, , and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , C. W. Landsea, , A. M. Mestas-Nuñez, , and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Gray, W., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Haig, J., , J. Nott, , and G.-J. Reichart, 2014: Australian tropical cyclone activity lower than at any time over the past 550–1,500 years. Nature, 505, 667671, doi:10.1038/nature12882.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and et al. , 2009: Harmonization of global land-use scenarios for the period 1500–2100 for IPCC-AR5. Integrated Land Ecosystem–Atmosphere Processes Study (iLEAPS) Newsletter, No. 7, iLEAPS International Project Office, Helsinki, Finland, 6–8.

    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., , A. Beusen, , G. van Drecht, , and M. de Vos, 2011: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 7386, doi:10.1111/j.1466-8238.2010.00587.x.

    • Search Google Scholar
    • Export Citation
  • Knabb, R. D., , J. R. Rhome, , and D. P. Brown, 2005: Tropical cyclone report: Hurricane Katrina, 23–30 August 2005. National Hurricane Center, 43 pp.

  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Korty, R. L., , S. J. Camargo, , and J. Galewsky, 2012a: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J. Climate, 25, 43484365, doi:10.1175/JCLI-D-11-00517.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., , S. J. Camargo, , and J. Galewsky, 2012b: Variations in tropical cyclone genesis factors in simulations of the Holocene epoch. J. Climate, 25, 81968211, doi:10.1175/JCLI-D-12-00033.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , S. J. Camargo, , and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , K. A. Emanuel, , and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, doi:10.1038/nature13278.

    • Search Google Scholar
    • Export Citation
  • Kozar, M. E., , M. E. Mann, , K. A. Emanuel, , and J. L. Evans, 2013: Long-term variations of North Atlantic tropical cyclone activity downscaled from a coupled model simulation of the last millennium. J. Geophys. Res., 118, 13 38313 392, doi:10.1002/2013JD020380.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., , B. L. Otto-Bliesner, , E. R. Wahl, , A. Conley, , P. J. Lawrence, , N. Rosenbloom, , and H. Teng, 2013: Last millennium climate and its variability in CCSM4. J. Climate, 26, 10851111, doi:10.1175/JCLI-D-11-00326.1.

    • Search Google Scholar
    • Export Citation
  • Lane, P., , J. P. Donnelly, , J. D. Woodruff, , and A. D. Hawkes, 2011: A decadally-resolved paleohurricane record archived in the late Holocene sediments of a Florida sinkhole. Mar. Geol., 287, 1430, doi:10.1016/j.margeo.2011.07.001.

    • Search Google Scholar
    • Export Citation
  • Lean, J., 2009: Calculations of solar irradiance. 4 pp. [Available online at http://www.geo.fu-berlin.de/en/met/ag/strat/forschung/SOLARIS/Input_data/Calculations_of_Solar_Irradiance.pdf.]

  • Liu, K. B., 2007: Paleotempestology. The Encyclopedia of Quaternary Science, Elsevier, 209–221.

  • Liu, K. B., , C. Shen, , and K. S. Louie, 2001: A 1000-year history of typhoon landfalls in Guangdong, southern China, reconstructed from Chinese historical documentary records. Ann. Assoc. Amer. Geogr., 91, 453464, doi:10.1111/0004-5608.00253.

    • Search Google Scholar
    • Export Citation
  • Malaizé, B., and et al. , 2011: Hurricanes and climate in the Caribbean during the past 3700 years BP. Holocene, 21, 911924, doi:10.1177/0959683611400198.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., , and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233241, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., , J. D. Woodruff, , J. P. Donnelly, , and Z. Zhang, 2009: Atlantic hurricanes and climate over the past 1,500 years. Nature, 460, 880883, doi:10.1038/nature08219.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., , M. J. Mills, , D. E. Kinnison, , J.-F. Lamarque, , N. Calvo, , and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Climate, 26, 73727391, doi:10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and et al. , 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 383–464.

  • McGregor, S., , and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 21782191, doi:10.1175/2010JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., and et al. , 2012: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301321, doi:10.1007/s00382-011-1126-x.

    • Search Google Scholar
    • Export Citation
  • Nieto Ferreira, R., , and W. H. Schubert, 1999: The role of tropical cyclones in the formation of tropical upper-tropospheric troughs. J. Atmos. Sci., 56, 28912907, doi:10.1175/1520-0469(1999)056<2891:TROTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , E. D. Rappin, , and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, doi:10.1002/qj.170.

    • Search Google Scholar
    • Export Citation
  • Nott, J., , and A. Forsyth, 2012: Punctuated global tropical cyclone activity over the past 5,000 years. Geophys. Res. Lett., 39, L14703, doi:10.1029/2012GL052236.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., , D. S. Nolan, , and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971, doi:10.1002/qj.706.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G., and et al. , 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1. 0). Geosci. Model Dev., 4, 3345, doi:10.5194/gmd-4-33-2011.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., , S. K. Esbensen, , and E. D. Maloney, 2009: The dynamics of the ENSO–Atlantic hurricane teleconnection: ENSO-related changes to the North African–Asian jet affect Atlantic basin tropical cyclogenesis. J. Climate, 22, 24582482, doi:10.1175/2008JCLI2360.1.

    • Search Google Scholar
    • Export Citation
  • Singh, O., , T. M. A. Khan, , and M. S. Rahman, 2001: Has the frequency of intense tropical cyclones increased in the north Indian Ocean? Curr. Sci., 80, 575580.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., , S. J. Camargo, , and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Vieira, L. E. A., , S. K. Solanki, , N. A. Krivova, , and I. Usoskin, 2011: Evolution of the solar irradiance during the Holocene. Astron. Astrophys., 531, A6, doi:10.1051/0004-6361/201015843.

  • Wallace, D. J., , J. D. Woodruff, , J. B. Anderson, , and J. P. Donnelly, 2014: Palaeohurricane reconstructions from sedimentary archives along the Gulf of Mexico, Caribbean Sea and western North Atlantic Ocean margins. Geol. Soc. London Spec. Publ., 388, 481–501, doi:10.1144/SP388.12.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , G. J. Holland, , J. A. Curry, , and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wei, T., and et al. , 2012: Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proc. Natl. Acad. Sci. USA, 109, 12 91112 915, doi:10.1073/pnas.1203282109.

    • Search Google Scholar
    • Export Citation
  • Woodruff, J. D., , J. P. Donnelly, , and A. Okusu, 2009: Exploring typhoon variability over the mid-to-late Holocene: Evidence of extreme coastal flooding from Kamikoshiki, Japan. Quat. Sci. Rev., 28, 17741785, doi:10.1016/j.quascirev.2009.02.005.

    • Search Google Scholar
    • Export Citation
  • Yan, Q., , H. Wang, , O. M. Johannessen, , and Z. Zhang, 2014: Greenland ice sheet contribution to future global sea level rise based on CMIP5 models. Adv. Atmos. Sci., 31, 816, doi:10.1007/s00376-013-3002-6.

    • Search Google Scholar
    • Export Citation
  • Yan, Q., , Z. Zhang, , H. Wang, , and D. Jiang, 2015: Simulated warm periods of climate over China during the last two millennia: The Sui-Tang warm period versus the Song-Yuan warm period. J. Geophys. Res. Atmos., 120, 22292241, doi:10.1002/2014JD022941.

    • Search Google Scholar
    • Export Citation
  • Yu, K.-F., , J.-X. Zhao, , Q. Shi, , and Q.-S. Meng, 2009: Reconstruction of storm/tsunami records over the last 4000 years using transported coral blocks and lagoon sediments in the southern South China Sea. Quat. Int., 195, 128137, doi:10.1016/j.quaint.2008.05.004.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , H. Wang, , J. Sun, , and H. Drange, 2010: Changes in the tropical cyclone genesis potential index over the western North Pacific in the SRES A2 scenario. Adv. Atmos. Sci., 27, 12461258, doi:10.1007/s00376-010-9096-1.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., , R. Saravanan, , and P. Chang, 2012: Influence of mean flow on the ENSO–vertical wind shear relationship over the Northern tropical Atlantic. J. Climate, 25, 858864, doi:10.1175/JCLI-D-11-00213.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 9
PDF Downloads 49 49 9

Tropical Cyclone Genesis Factors in a Simulation of the Last Two Millennia: Results from the Community Earth System Model

View More View Less
  • 1 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 3 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Using a coupled global climate model, Community Earth System Model (CESM), the authors investigate the response of tropical cyclone (TC) genesis factors (i.e., potential intensity, vertical wind shear, midtropospheric moisture content, and absolute vorticity) to external forcings in the last two millennia (L2M). They then examine how the large-scale conditions that favor TC activity varied using a genesis potential index (GPI). These large-scale genesis factors generally exhibit no long-term trend in the simulation of the L2M prior to the industrial revolution, and the spread in the interannual variability lies within a small window. The estimated TC activity is highly variable from region to region on multidecadal time scales. Conditions appear to be more favorable for TC genesis in the twentieth century in the Northern Hemisphere relative to earlier centuries of the L2M. Additionally, conditions in this simulation are not more favorable for TC formation during the Medieval Climate Anomaly (AD 1000–1200) relative to the Little Ice Age (AD 1500–1700) except in the eastern North Pacific and south Indian Ocean. Although a comparison of conditions simulated in the model with proxy-based reconstructions of prehistoric storm activity finds agreement during several active periods in the western North Pacific, the time series of simulated genesis factors does not match that of proxy reconstructions over the entire interval in either the western North Pacific or North Atlantic; this discrepancy likely arises from uncertainties in both the model and reconstructions.

Corresponding author address: Qing Yan, Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: yanqing@mail.iap.ac.cn

Abstract

Using a coupled global climate model, Community Earth System Model (CESM), the authors investigate the response of tropical cyclone (TC) genesis factors (i.e., potential intensity, vertical wind shear, midtropospheric moisture content, and absolute vorticity) to external forcings in the last two millennia (L2M). They then examine how the large-scale conditions that favor TC activity varied using a genesis potential index (GPI). These large-scale genesis factors generally exhibit no long-term trend in the simulation of the L2M prior to the industrial revolution, and the spread in the interannual variability lies within a small window. The estimated TC activity is highly variable from region to region on multidecadal time scales. Conditions appear to be more favorable for TC genesis in the twentieth century in the Northern Hemisphere relative to earlier centuries of the L2M. Additionally, conditions in this simulation are not more favorable for TC formation during the Medieval Climate Anomaly (AD 1000–1200) relative to the Little Ice Age (AD 1500–1700) except in the eastern North Pacific and south Indian Ocean. Although a comparison of conditions simulated in the model with proxy-based reconstructions of prehistoric storm activity finds agreement during several active periods in the western North Pacific, the time series of simulated genesis factors does not match that of proxy reconstructions over the entire interval in either the western North Pacific or North Atlantic; this discrepancy likely arises from uncertainties in both the model and reconstructions.

Corresponding author address: Qing Yan, Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: yanqing@mail.iap.ac.cn
Save