• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., , N. Nicholls, , P. D. Jones, , and I. J. Butterworth, 1991: A further extension of the Tahiti–Darwin SOI, early SOI results and Darwin pressure. J. Climate, 4, 743749, doi:10.1175/1520-0442(1991)004<0743:AFEOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alory, G., , S. Wijffels, , and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, doi:10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. Widmann, , V. P. Dymnikov, , J. M. Wallace, , and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , S.-P. Xie, , H. Tokinaga, , Y. M. Okumura, , H. Kubota, , N. Johnson, , and X.-T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo–western Pacific for 1870–2007. J. Climate, 25, 17221744, doi:10.1175/JCLI-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , S.-P. Xie, , T. Miyama, , K. J. Richards, , and R. J. O. Small, 2007: What maintains the SST front north of the eastern Pacific equatorial cold tongue? J. Climate, 20, 25002514, doi:10.1175/JCLI4173.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , S.-P. Xie, , G. Huang, , and K.-M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, doi:10.1175/2008JCLI2590.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , S.-P. Xie, , Y.-L. Yang, , X.-T. Zheng, , L. Liu, , and G. Huang, 2013: Indian Ocean variability in the CMIP5 multimodel ensemble: The basin mode. J. Climate, 26, 72407266, doi:10.1175/JCLI-D-12-00678.1.

    • Search Google Scholar
    • Export Citation
  • Giese, B. S., , and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, doi:10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Huang, G., , and Z. Yan, 1999: The East Asian summer monsoon circulation anomaly index and its interannual variations. Chin. Sci. Bull., 44, 13251329, doi:10.1007/BF02885855.

    • Search Google Scholar
    • Export Citation
  • Huang, G., , K. Hu, , and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, doi:10.1175/2010JCLI3577.1.

    • Search Google Scholar
    • Export Citation
  • Huang, R., , and W. Li, 1987: Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia. Proc. Int. Conf. on the General Circulation of East Asia, Chengdu, China, 40–51.

  • Huang, R., , and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, doi:10.1007/BF02656915.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., , A. Shouji, , S. Sugimoto, , and T. Matsumoto, 2005: Objective analyses of sea surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, doi:10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., , M. A. Cane, , Y. Kushnir, , A. C. Clement, , M. B. Blumenthal, , and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., , S. D. Woodruff, , and D. I. Berry, 2007: Metadata from WMO Publication No. 47 and an assessment of voluntary observing ship observation heights in ICOADS. J. Atmos. Oceanic Technol., 24, 214234, doi:10.1175/JTECH1949.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , B. J. Soden, , and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, doi:10.1256/qj.05.204.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , S.-P. Xie, , N.-C. Lau, , and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, doi:10.1073/pnas.1215582110.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., , and J. C. L. Chan, 2009: Interdecadal variability of tropical cyclone landfall in the Philippines from 1902 to 2005. Geophys. Res. Lett., 36, L12802, doi:10.1029/2009GL038108.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., , and B. Wang, 2009: How much do tropical cyclones affect seasonal and interannual rainfall variability over the western North Pacific? J. Climate, 22, 54955510, doi:10.1175/2009JCLI2646.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., , Y. Kosaka, , and S.-P. Xie, 2015: A 116-year long index of the Pacific-Japan pattern and its interdecadal variability. Int. J. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., , X. Jiang, , S.-P. Xie, , and W. T. Liu, 2004: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability. J. Geophys. Res., 109, C07012, doi:10.1029/2003JC002179.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impacts on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1999: On trends and possible artifacts in global ocean cloud cover between 1952 and 1995. J. Climate, 12, 18641870, doi:10.1175/1520-0442(1999)012<1864:OTAPAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, X., , and G. Huang, 2012: Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int. J. Climatol., 32, 20732080, doi:10.1002/joc.2378.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and et al. , 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., , S.-P. Xie & , and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , and Y. Tanimoto, 2004: Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteor. Soc. Japan, 82, 10071018, doi:10.2151/jmsj.2004.1007.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , and S.-P. Xie, 2011: Wave- and Anemometer-Based Sea Surface Wind (WASWind) for climate change analysis. J. Climate, 24, 267285, doi:10.1175/2010JCLI3789.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S.-P. Xie, , C. Deser, , Y. Kosaka, , and Y. M. Okumura, 2012a: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, doi:10.1038/nature11576.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S.-P. Xie, , A. Timmermann, , S. McGregor, , T. Ogata, , H. Kubota, , and Y. M. Okumura, 2012b: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710, doi:10.1175/JCLI-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. M. Caron, , D. P. Stepaniak, , and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107 (D8), doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and S.-I. An, 2005: A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys. Res. Lett., 32, L15710, doi:10.1029/2005GL022709.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , R. H. Weisberg, , and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res., 104 (C3), 51315149, doi:10.1029/1998JC900090.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , W. Wang, , D. Wang, , and Q. Wang, 2006: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res., 111, C03023, doi:10.1029/2005JC003333.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., , and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24, 779782, doi:10.1029/97GL00689.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and K. Matsuura, 2001: Terrestrial air temperature and precipitation: Monthly and annual time series (1950–1999). [Available online at http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html.]

  • Woodruff, S. D., and et al. , 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., , S. D. Woodruff, , R. W. Reynolds, , S. J. Lubker, , and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25, 823842, doi:10.1002/joc.1166.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi:10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , W. Chen, , G. Wang, , and K. Hu, 2014: Relative contribution of ENSO and East Asian winter monsoon to the South China Sea SST anomalies during ENSO decaying years. J. Geophys. Res. Atmos., 119, 50465064, doi:10.1002/2013JD021095.

    • Search Google Scholar
    • Export Citation
  • Wu, Y.-L., , Y. Du, , Y.-H. Zhang, , and X.-T. Zheng, 2012: Interannual variability of sea surface temperature in the northern Indian Ocean associated with ENSO and IOD. Atmos. Oceanic Sci. Lett., 5, 295300.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Q. Xie, , D. X. Wang, , and W. T. Liu, 2003: Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 108, 3261, doi:10.1029/2003JC001867.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , K. Hu, , J. Hafner, , H. Tokinaga, , Y. Du, , G. Huang, , and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Y. Du, , G. Huang, , X.-T. Zheng, , H. Tokinaga, , K. Hu, , and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, doi:10.1175/2010JCLI3429.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , Q. Liu, , S.-P. Xie, , Z. Liu, , and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 13
PDF Downloads 48 48 14

Interdecadal Difference of Interannual Variability Characteristics of South China Sea SSTs Associated with ENSO

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and University of Chinese Academy of Sciences, Beijing, China
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
  • | 3 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 4 Disaster Prevention Research Institute, and the Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

The correlation between sea surface temperature (SST) and El Niño–Southern Oscillation (ENSO) persists into post-ENSO September over the South China Sea (SCS), the longest correlation in the World Ocean. Slow modulations of this correlation are analyzed by using the International Comprehensive Ocean–Atmosphere Dataset (ICOADS). ENSO’s influence on SCS SST has experienced significant interdecadal changes over the past 138 years (1870–2007), with a double-peak structure correlation after the 1960s compared to a single-peak before the 1940s. According to the ENSO correlation character, the analysis period is divided into four epochs. In epoch 3, 1960–83, the SST warming and enhanced precipitation over the southeastern tropical Indian Ocean, rather than the Indian Ocean basinwide warming, induce easterly wind anomalies and warm up the SCS in the summer following El Niño. Besides the Indian Ocean effect, during epochs 2 (1930–40) and 4 (1984–2007), the Pacific–Japan (PJ) pattern of atmospheric circulation anomalies helps sustain the SCS SST warming through summer (June–August) with easterly wind anomalies. The associated increase in shortwave radiation and decrease in upward latent heat flux cause the SCS SST warming to persist into the summer. Meanwhile, the rainfall response around the SCS to ENSO shows interdecadal variability, with stronger variability after the 1980s. The results suggest that both the remote forcing from the tropical Indian Ocean and the PJ pattern are important for the ENSO teleconnection to the SCS and its interdecadal modulations.

Corresponding author address: Yan Du, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, 164 West Xingang Road, Guangzhou 510301, China. E-mail: duyan@scsio.ac.cn

Abstract

The correlation between sea surface temperature (SST) and El Niño–Southern Oscillation (ENSO) persists into post-ENSO September over the South China Sea (SCS), the longest correlation in the World Ocean. Slow modulations of this correlation are analyzed by using the International Comprehensive Ocean–Atmosphere Dataset (ICOADS). ENSO’s influence on SCS SST has experienced significant interdecadal changes over the past 138 years (1870–2007), with a double-peak structure correlation after the 1960s compared to a single-peak before the 1940s. According to the ENSO correlation character, the analysis period is divided into four epochs. In epoch 3, 1960–83, the SST warming and enhanced precipitation over the southeastern tropical Indian Ocean, rather than the Indian Ocean basinwide warming, induce easterly wind anomalies and warm up the SCS in the summer following El Niño. Besides the Indian Ocean effect, during epochs 2 (1930–40) and 4 (1984–2007), the Pacific–Japan (PJ) pattern of atmospheric circulation anomalies helps sustain the SCS SST warming through summer (June–August) with easterly wind anomalies. The associated increase in shortwave radiation and decrease in upward latent heat flux cause the SCS SST warming to persist into the summer. Meanwhile, the rainfall response around the SCS to ENSO shows interdecadal variability, with stronger variability after the 1980s. The results suggest that both the remote forcing from the tropical Indian Ocean and the PJ pattern are important for the ENSO teleconnection to the SCS and its interdecadal modulations.

Corresponding author address: Yan Du, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, 164 West Xingang Road, Guangzhou 510301, China. E-mail: duyan@scsio.ac.cn
Save