• Bamber, J., , and J. Gomez-Dans, 2009: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data—Part 1: Data and methods. Cryosphere, 3, 101111, doi:10.5194/tc-3-101-2009.

    • Search Google Scholar
    • Export Citation
  • Barrand, N. E., , D. G. Vaughan, , N. Steiner, , M. Tedesco, , P. Kuipers Munneke, , M. R. van den Broeke, , and J. S. Hosking, 2013: Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res.: Earth Surf., 118, 315330, doi:10.1029/2012JF002559.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., , and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, doi:10.1175/JCLI-D-11-00685.1.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 2004: Modeled Antarctic precipitation. Part I: Spatial and temporal variability. J. Climate, 17, 427448, doi:10.1175/1520-0442(2004)017<0427:MAPPIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034620, doi:10.1175/3241.1.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , A. J. Monaghan, , K. W. Manning, , and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579603, doi:10.1175/MWR-2881.1.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., , and T. R. Parish, 2000: An analysis of the nonhydrostatic dynamics in numerically simulated Antarctic katabatic flows. J. Atmos. Sci., 57, 891898, doi:10.1175/1520-0469(2000)057<0891:AAOTND>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Claremar, B., , F. Obleitner, , C. Reijmer, , V. Pohjola, , A. Waxegård, , F. Karner, , and A. Rutgersson, 2012: Applying a mesoscale atmospheric model to Svalbard glaciers. Adv. Meteor., 2012, 321649, doi:10.1155/2012/321649.

    • Search Google Scholar
    • Export Citation
  • Cook, A. J., , and D. G. Vaughan, 2010: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4, 7798, doi:10.5194/tc-4-77-2010.

    • Search Google Scholar
    • Export Citation
  • Cook, A. J., , T. Murray, , A. Luckman, , D. G. Vaughan, , and N. E. Barrand, 2012: A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: Methods and accuracy assessment. Earth Syst. Sci. Data, 4, 129142, doi:10.5194/essd-4-129-2012.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., , I. A. Renfrew, , J. C. King, , A. Orr, , T. A. Lachlan-Cope, , M. Weeks, , and S. L. Gray, 2014: Foehn jets over the Larsen C Ice Shelf, Antarctica. Quart. J. Roy. Meteor. Soc., 141, 698713, doi:10.1002/qj.2382.

    • Search Google Scholar
    • Export Citation
  • Ettema, J., , M. R. van den Broeke, , E. van Meijgaard, , W. J. van de Berg, , J. E. Box, , and K. Steffen, 2010: Climate of the Greenland ice sheet using a high-resolution climate model—Part 1: Evaluation. Cryosphere, 4, 511527, doi:10.5194/tc-4-511-2010.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., 2007: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere, 1, 2140, doi:10.5194/tc-1-21-2007.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., , and G. Krinner, 2001: Antarctic surface mass balance and systematic biases in general circulation models. J. Geophys. Res., 106, 20 65320 664, doi:10.1029/2001JD900136.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophys. Res. Lett., 41, 42304237, doi:10.1002/2014GL060172.

  • King, J. C., 1994: Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol., 14, 357369, doi:10.1002/joc.3370140402.

    • Search Google Scholar
    • Export Citation
  • King, J. C., and et al. , 2015: Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. J. Geophys. Res. Atmos., 120, 1335–1347, doi:10.1002/2014JD022604.

    • Search Google Scholar
    • Export Citation
  • Kuipers Munneke, P., , M. R. van den Broeke, , J. T. M. Lenaerts, , M. G. Flanner, , A. S. Gardner, , and W. J. Van de Berg, 2011: A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res., 116, D05114, doi:10.1029/2010JD015113.

    • Search Google Scholar
    • Export Citation
  • Kuipers Munneke, P., , M. R. van den Broeke, , J. C. King, , T. Gray, , and C. H. Reijmer, 2012: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere, 6, 353363, doi:10.5194/tc-6-353-2012.

    • Search Google Scholar
    • Export Citation
  • Lang, C., , X. Fettweis, , and M. Erpicum, 2015: Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming. Cryosphere, 9, 83101, doi:10.5194/tc-9-83-2015.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , M. R. van den Broeke, , S. J. Déry, , E. van Meijgaard, , W. J. van de Berg, , S. P. Palm, , and J. Sanz Rodrigo, 2012a: Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res., 117, D05108, doi:10.1029/2011JD016145.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , M. R. van den Broeke, , C. Scarchilli, , and C. Agosta, 2012b: Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica. J. Glaciol., 58, 821829, doi:10.3189/2012JoG12J020.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , M. R. van den Broeke, , W. J. van de Berg, , E. van Meijgaard, , and P. Kuipers Munneke, 2012c: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, doi:10.1029/2011GL050713.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , M. R. van den Broeke, , J. M. van Wessem, , W. J. van de Berg, , E. van Meijgaard, , L. H. van Ulft, , and M. Schaefer, 2014: Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J. Climate, 27, 46074621, doi:10.1175/JCLI-D-13-00579.1.

    • Search Google Scholar
    • Export Citation
  • Ligtenberg, S. R. M., , M. M. Helsen, , and M. R. van den Broeke, 2011: An improved semi-empirical model for the densification of Antarctic firn. Cryosphere, 5, 809819, doi:10.5194/tc-5-809-2011.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , K. Jezek, , B. Li, , and Z. Zhao, 2001: Radarsat Antarctic Mapping Project Digital Elevation Model version 2. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/docs/daac/nsidc0082_ramp_dem_v2.gd.html.]

  • Marshall, G., , A. Orr, , N. van Lipzig, , and J. King, 2006: The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J. Climate, 19, 53885404, doi:10.1175/JCLI3844.1.

    • Search Google Scholar
    • Export Citation
  • Morris, E. M., , and D. G. Vaughan, 2003: Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. Antarct. Res. Ser., 79, 6168, doi:10.1029/079ARS05.

    • Search Google Scholar
    • Export Citation
  • Orr, A., , G. J. Marshall, , J. C. R. Hunt, , J. Sommeria, , C.-G. Wang, , N. P. M. van Lipzig, , D. Cresswell, , and J. C. King, 2008: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci., 65, 13961413, doi:10.1175/2007JAS2498.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1983: The influence of the Antarctic Peninsula on the wind field over the western Weddell Sea. J. Geophys. Res., 88, 26842692, doi:10.1029/JC088iC04p02684.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., , K. W. Manning, , D. H. Bromwich, , J. J. Cassano, , and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, doi:10.1175/BAMS-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Reijmer, C. H., , E. van Meijgaard, , and M. R. van den Broeke, 2005: Evaluation of temperature and wind over Antarctica in a Regional Atmospheric Climate Model using 1 year of automatic weather station data and upper air observations. J. Geophys. Res., 110, D04103, doi:10.1029/2004JD005234.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , G. Casassa, , P. Gogineni, , W. Krabill, , A. Rivera, , and R. Thomas, 2004: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett.,31, L18401, doi:10.1029/2004GL020697.

  • Rott, H., , F. Müller, , T. Nagler, , and D. Floricioiu, 2011: The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula. Cryosphere, 5, 125134, doi:10.5194/tc-5-125-2011.

    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., 2004: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett.,31, L18402, doi:10.1029/2004GL020670.

  • Scambos, T. A., , C. Hulbe, , M. Fahnestock, , and J. Bohlander, 2000: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46, 516530, doi:10.3189/172756500781833043.

    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., , H. A. Fricker, , C.-C. Liu, , J. Bohlander, , J. Fastook, , A. Sargent, , R. Massom, , and A.-M. Wu, 2009: Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett., 280, 5160, doi:10.1016/j.epsl.2008.12.027.

    • Search Google Scholar
    • Export Citation
  • Schwerdtfeger, W., 1975: The effect of the Antarctic Peninsula on the temperature regime of the Weddell Sea. Mon. Wea. Rev., 103, 4551, doi:10.1175/1520-0493(1975)103<0045:TEOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., , W. Abdalati, , and H. J. Zwally, 2007: Persistent surface snowmelt over Antarctica (1987–2006) from 19.35 GHz brightness temperatures. Geophys. Res. Lett.,34, L18504, doi:10.1029/2007GL031199.

  • Turner, J., , S. R. Colwell, , G. J. Marshall, , T. A. Lachlan-Cope, , A. M. Carleton, , P. D. Jones, , and P. A. Reid, 2004: The SCAR READER Project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 28902898, doi:10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and et al. , 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279294, doi:10.1002/joc.1130.

    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR/CISL/VETS, 2014: The NCAR Command Language Version 6.2.1. NCAR Computer Information Systems Laboratory, doi:10.5065/D6WD3XH5.

  • Undén, P., and et al. , 2002: HIRLAM-5 Scientific Documentation. Swedish Meteorology and Hydrology Institute Tech. Rep., 143 pp. [Available online at http://www.hirlam.org/index.php/meeting-reports-and-presentations/doc_view/308-unden-et-al-2002.]

  • Van Angelen, J. H., , M. R. van den Broeke, , and W. J. van de Berg, 2011: Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas. J. Geophys. Res., 116, D10101, doi:10.1029/2010JD015485.

    • Search Google Scholar
    • Export Citation
  • Van den Broeke, M. R., , J.-G. Winther, , E. Isaksson, , J. F. Pinglot, , L. Karlöf, , T. Eiken, , and L. Conrads, 1999: Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J. Glaciol., 45, 295–302, doi:10.3189/002214399793377266.

    • Search Google Scholar
    • Export Citation
  • Van den Broeke, M. R., , C. H. Reijmer, , D. van As, , R. van de Wal, , and J. Oerlemans, 2005: Seasonal cycles of Antarctic surface energy balance from automatic weather stations. Ann. Glaciol.,41, 131–139, doi:10.3189/172756405781813168.

  • Van Lipzig, N. P. M., , J. C. King, , T. A. Lachlan-Cope, , and M. R. van den Broeke, 2004: Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J. Geophys. Res., 109, D24106, doi:10.1029/2004JD004701.

    • Search Google Scholar
    • Export Citation
  • Van Lipzig, N. P. M., , G. J. Marshall, , A. Orr, , and J. C. King, 2008: The relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula summer temperatures: Analysis of a high-resolution model climatology. J. Climate, 21, 16491668, doi:10.1175/2007JCLI1695.1.

    • Search Google Scholar
    • Export Citation
  • Van Wessem, J. M., , C. H. Reijmer, , J. T. M. Lenaerts, , W. J. van de Berg, , M. R. van den Broeke, , and E. van Meijgaard, 2014a: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere, 8, 125135, doi:10.5194/tc-8-125-2014.

    • Search Google Scholar
    • Export Citation
  • Van Wessem, J. M., and et al. , 2014b: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60, 761770, doi:10.3189/2014JoG14J051.

    • Search Google Scholar
    • Export Citation
  • Wendler, G., , N. Ishikawa, , and Y. Kodama, 1988: The heat balance of the icy slope of Adelie Land, Eastern Antarctica. J. Appl. Meteor., 27, 5265, doi:10.1175/1520-0450(1988)027<0052:THBOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 183 41
PDF Downloads 186 186 34

Temperature and Wind Climate of the Antarctic Peninsula as Simulated by a High-Resolution Regional Atmospheric Climate Model

View More View Less
  • 1 Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
  • | 2 Department of Geography, Swansea University, Swansea, United Kingdom
  • | 3 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
© Get Permissions
Restricted access

Abstract

The latest polar version of the Regional Atmospheric Climate Model (RACMO2.3) has been applied to the Antarctic Peninsula (AP). In this study, the authors present results of a climate run at 5.5 km for the period 1979–2013, in which RACMO2.3 is forced by ERA-Interim atmospheric and ocean surface fields, using an updated AP surface topography. The model results are evaluated with near-surface temperature and wind measurements from 12 manned and automatic weather stations and vertical profiles from balloon soundings made at three stations. The seasonal cycle of near-surface temperature and wind is simulated well, with most biases still related to the limited model resolution. High-resolution climate maps of temperature and wind showing that the AP climate exhibits large spatial variability are discussed. Over the steep and high mountains of the northern AP, large west-to-east climate gradients exist, while over the gentle southern AP mountains the near-surface climate is dominated by katabatic winds. Over the flat ice shelves, where katabatic wind forcing is weak, interannual variability in temperature is largest. Finally, decadal trends of temperature and wind are presented, and it is shown that recently there has been distinct warming over the northwestern AP and cooling over the rest of the AP, related to changes in sea ice cover.

Corresponding author address: Jan Melchior van Wessem, Princetonplein 5, Utrecht 3584 CC, the Netherlands. E-mail: j.m.vanwessem@uu.nl

Abstract

The latest polar version of the Regional Atmospheric Climate Model (RACMO2.3) has been applied to the Antarctic Peninsula (AP). In this study, the authors present results of a climate run at 5.5 km for the period 1979–2013, in which RACMO2.3 is forced by ERA-Interim atmospheric and ocean surface fields, using an updated AP surface topography. The model results are evaluated with near-surface temperature and wind measurements from 12 manned and automatic weather stations and vertical profiles from balloon soundings made at three stations. The seasonal cycle of near-surface temperature and wind is simulated well, with most biases still related to the limited model resolution. High-resolution climate maps of temperature and wind showing that the AP climate exhibits large spatial variability are discussed. Over the steep and high mountains of the northern AP, large west-to-east climate gradients exist, while over the gentle southern AP mountains the near-surface climate is dominated by katabatic winds. Over the flat ice shelves, where katabatic wind forcing is weak, interannual variability in temperature is largest. Finally, decadal trends of temperature and wind are presented, and it is shown that recently there has been distinct warming over the northwestern AP and cooling over the rest of the AP, related to changes in sea ice cover.

Corresponding author address: Jan Melchior van Wessem, Princetonplein 5, Utrecht 3584 CC, the Netherlands. E-mail: j.m.vanwessem@uu.nl
Save