• Adames, Á. F., , and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Bao, M., , and D. L. Hartmann, 2014: The response to MJO-like forcing in a nonlinear shallow-water model. Geophys. Res. Lett., 41, 13221328, doi:10.1002/2013GL057683.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2012: Africa and west Asia. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K. M. Lau and D. E. Waliser, Eds., Springer, 477–495.

  • Barrett, B. S., , and V. Gensini, 2013: Modulation of daily United States April–May tornado day likelihood by phase of the Madden–Julian oscillation. Geophys. Res. Lett., 40, 27902795, doi:10.1002/grl.50522.

    • Search Google Scholar
    • Export Citation
  • Baxter, S., , S. Weaver, , J. Gottschalck, , and Y. Xue, 2014: Pentad evolution of wintertime impacts of the Madden–Julian oscillation over the contiguous United States. J. Climate, 27, 73567367, doi:10.1175/JCLI-D-14-00105.1.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., , E. H. Berbery, , and R. W. Higgins, 2011: Modulation of cold-season U.S. daily precipitation by the Madden–Julian oscillation. J. Climate, 24, 51575166, doi:10.1175/2011JCLI4018.1.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., , and D. L. Hartmann, 1995: The linear and nonlinear extratropical response to tropical intraseasonal heating. J. Atmos. Sci., 52, 44484471, doi:10.1175/1520-0469(1995)052<4448:TLANER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., , and G. A. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600613, doi:10.1175/1520-0434(2003)018<0600:TIOTMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., , and P. W. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145, doi:10.1175/2008JCLI2665.1.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., , and E. LeDrew, 2000: Variability and change in terrestrial snow cover: Data acquisition and links to the atmosphere. Prog. Phys. Geogr., 24, 469498, doi:10.1177/030913330002400401.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., , and R. Brown, 2012: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model predictions. Geophys. Res. Lett., 39, L19504, doi:10.1029/2012GL053387.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., , R. Brown, , L. Mudryk, , and K. Luojus, 2014: Terrestrial snow cover. [Available online at http://www.arctic.noaa.gov/reportcard/snow_cover.html.]

  • Déry, S. J., , and R. D. Brown, 2007: Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett., 34, L22504, doi:10.1029/2007GL031474.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., , and Y.-J. Kim, 2013: Interaction between the MJO and polar circulations. J. Climate, 26, 35623574, doi:10.1175/JCLI-D-11-00508.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , J. J. Benedict, , and E. D. Maloney, 2014: Impact of the MJO on the boreal winter extratropical circulation. Geophys. Res. Lett., 41, 60556062, doi:10.1002/2014GL061094.

    • Search Google Scholar
    • Export Citation
  • Ge, Y., , and G. Gong, 2008: Observed inconsistencies between snow extent and snow depth variability at regional/continental scales. J. Climate, 21, 10661082, doi:10.1175/2007JCLI1829.1.

    • Search Google Scholar
    • Export Citation
  • Goss, M., , and S. B. Feldstein, 2015: The impact of the initial flow on the extratropical response to Madden–Julian oscillation convective heating. Mon. Wea. Rev., 143, 11041121, doi:10.1175/MWR-D-14-00141.1.

    • Search Google Scholar
    • Export Citation
  • Guan, B., , D. E. Waliser, , N. P. Molotch, , E. J. Fetzer, , and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, doi:10.1175/MWR-D-11-00087.1.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., 2000: Covariability of spring snowpack and summer rainfall across the southwest United States. J. Climate, 13, 40184027, doi:10.1175/1520-0442(2000)013<4018:COSSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., , and J. W. Preston, 1997: Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett., 24, 22072210, doi:10.1029/97GL02099.

    • Search Google Scholar
    • Export Citation
  • Hall, A., , X. Qu, , and J. D. Neelin, 2008: Improving predictions of summer climate change in the United States. Geophys. Res. Lett., 35, L01702, doi:10.1029/2007GL032012.

    • Search Google Scholar
    • Export Citation
  • He, J., , H. Lin, , and Z. Wu, 2011: Another look at influences of the Madden-Julian oscillation on the wintertime East Asian weather. J. Geophys. Res., 116, D03109, doi:10.1029/2010JD014787.

    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., , B. S. Barrett, , and D. M. Lafleur, 2014: Arctic sea ice and the Madden–Julian oscillation (MJO). Climate Dyn., 43, 21852196, doi:10.1007/s00382-013-2043-y.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244, doi:10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, S. I., , T. D. Prowse, , and B. R. Bonsal, 2014: Linkages between snow ablation and atmospheric boundary-layer conditions in a semi-arid basin of western Canada. J. Hydrol., 517, 949962, doi:10.1016/j.jhydrol.2014.06.010.

    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., , B. M. Kim, , C. H. Ho, , and Y. H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788801, doi:10.1175/2007JCLI1801.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F., , and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., , and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, doi:10.1175/2009JCLI3099.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., , D. C. Collins, , S. B. Feldstein, , M. L. L’Heureux, , and E. E. Riddle, 2014: Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Wea. Forecasting, 29, 2338, doi:10.1175/WAF-D-13-00102.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2014: Sensitivity to Madden–Julian oscillation variations on heavy precipitation over the contiguous United States. Atmos. Res., 147–148, 1026, doi:10.1016/j.atmosres.2014.05.002.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , D. E. Waliser, , K. M. Lau, , and W. Stern, 2004: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132, 14621471, doi:10.1175/1520-0493(2004)132<1462:TMOAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , and H.-M. Kim, 2010: Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J. Climate, 23, 23682378, doi:10.1175/2010JCLI3288.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , S. P. P. Mahanama, , B. Livneh, , D. P. Lettenmaier, , and R. H. Reichle, 2010: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613616, doi:10.1038/ngeo944.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. J. Atmos. Sci., 43, 11641181, doi:10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050, doi:10.1175/2007JCLI1955.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., 2015: Subseasonal variability of North American wintertime surface air temperature. Climate Dyn., doi:10.1007/s00382-014-2363-6, in press.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , and G. Brunet, 2009: The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 22502262, doi:10.1175/2009MWR2831.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 41304149, doi:10.1175/2008JCLI2515.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, doi:10.1175/2010MWR3363.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahanama, S., , B. Livneh, , R. Koster, , D. Lettenmaier, , and R. Reichle, 2012: Soil moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydrometeor., 13, 189203, doi:10.1175/JHM-D-11-046.1.

    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., , and N. S. Diffenbaugh, 2015: Influence of temperature and precipitation variability on near-term snow trends. Climate Dyn., 45, 10991116, doi:10.1007/s00382-014-2357-4.

    • Search Google Scholar
    • Export Citation
  • Matsumura, S., , X. Zhang, , and K. Yamazaki, 2014: Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated sea ice decrease. J. Climate, 27, 65516558, doi:10.1175/JCLI-D-13-00549.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , B. J. Hoskins, , and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Monteiro, J. M., , Á. F. Adames, , J. M. Wallace, , and J. S. Sukhatme, 2014: Interpreting the upper level structure of the Madden-Julian oscillation. Geophys. Res. Lett., 41, 91589165, doi:10.1002/2014GL062518.

    • Search Google Scholar
    • Export Citation
  • Mori, M., , and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, doi:10.2151/jmsj.86.213.

    • Search Google Scholar
    • Export Citation
  • Neena, J. M., , J. Y. Lee, , D. Waliser, , B. Wang, , and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, doi:10.1175/JCLI-D-13-00624.1.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. J. C, 2015: Multidecadal variations in the modulation of Alaska wintertime air temperature by the Madden–Julian oscillation. Theor. Appl. Climatol.,121, 111, doi:10.1007/s00704-014-1215-y.

  • Quiring, S. M., , and D. B. Kluver, 2009: Relationship between winter/spring snowfall and summer precipitation in the northern Great Plains of North America. J. Hydrometeor., 10, 12031217, doi:10.1175/2009JHM1089.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , R. D. Koster, , G. J. M. De Lannoy, , B. A. Forman, , Q. Liu, , S. P. P. Mahanama, , and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., , M. B. Stoner, , N. C. Johnson, , M. L. L’Heureux, , D. C. Collins, , and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, doi:10.1007/s00382-012-1493-y.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., , K. F. Dewey, , and R. R. Heim, 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc., 74, 16891696, doi:10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodney, M., , H. Lin, , and J. Derome, 2013: Subseasonal prediction of wintertime North American surface air temperature during strong MJO events. Mon. Wea. Rev., 141, 28972909, doi:10.1175/MWR-D-12-00221.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012: Tropical extratropical interactions. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K. M. Lau and D. E. Waliser, Eds., Springer, 497–512.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , K. MacRitchie, , J. Asuma, , and T. Melino, 2010: Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño–Southern Oscillation during boreal winter. J. Climate, 23, 40454059, doi:10.1175/2010JCLI3446.1.

    • Search Google Scholar
    • Export Citation
  • Rydzik, M., , and A. R. Desai, 2014: Relationship between snow extent and midlatitude disturbance centers. J. Climate, 27, 29712982, doi:10.1175/JCLI-D-12-00841.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., , and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, K. H., , and S. W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, doi:10.1175/2011JAS3686.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., , R. E. Dickinson, , K. L. Findell, , and B. R. Lintner, 2013: How are spring snow conditions in central Canada related to early warm-season precipitation? J. Hydrometeor., 14, 787807, doi:10.1175/JHM-D-12-029.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. T. Fasullo, , and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , J. M. Wallace, , M. L. Hutchins, , and R. H. Holzworth, 2013: Diurnal lightning variability over the Maritime Continent: Impact of low-level winds, cloudiness, and the MJO. J. Atmos. Sci., 70, 31283146, doi:10.1175/JAS-D-13-021.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, T., , S. Peng, , C. Ottlé, , and P. Ciais, 2015: Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes. Environ. Res. Lett., 10, 024018, doi:10.1088/1748-9326/10/2/024018.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., , and E. Berry, 2009: The tropical Madden–Julian oscillation and the global wind oscillation. Mon. Wea. Rev., 137, 16011614, doi:10.1175/2008MWR2686.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yao, W., , H. Lin, , and J. Derome, 2011: Submonthly forecasting of winter surface air temperature in North America based on organized tropical convection. Atmos.–Ocean, 49, 5160, doi:10.1080/07055900.2011.556882.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., , S. Feldstein, , and S. Lee, 2011: The impact of the Madden-Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., , S. Lee, , and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, doi:10.1175/JCLI-D-11-00566.1.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., , S. B. Feldstein, , and S. Lee, 2014: The prominence of a tropical convective signal in the wintertime Arctic temperature. Atmos. Sci. Lett., 15, 712, doi:10.1002/asl2.455.

    • Search Google Scholar
    • Export Citation
  • Zakharova, E. A., , A. V. Kouraev, , S. Biancamaria, , M. V. Kolmakova, , N. M. Mognard, , V. A. Zemtsov, , S. N. Kirpotin, , and B. Decharme, 2011: Snow cover and spring flood flow in the northern part of western Siberia (the Poluy, Nadym, Pur, and Taz Rivers). J. Hydrometeor., 12, 14981511, doi:10.1175/JHM-D-11-017.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., , and A. J. Miller, 2005: The interaction of the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 18, 143159, doi:10.1175/JCLI3251.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., , M. L’Heureux, , S. Weaver, , and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 14591471, doi:10.1007/s00382-011-1001-9.

    • Search Google Scholar
    • Export Citation
  • Zhu, C. M., , D. P. Lettenmaier, , and T. Cavazos, 2005: Role of antecedent land surface conditions on North American monsoon rainfall variability. J. Climate, 18, 31043121, doi:10.1175/JCLI3387.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, C. M., , T. Cavazos, , and D. P. Lettenmaier, 2007: Role of antecedent land surface conditions in warm season precipitation over northwestern Mexico. J. Climate, 20, 17741791, doi:10.1175/JCLI4085.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., , M. C. Wheeler, , A. H. Sobel, , and D. Hudson, 2014: Seamless precipitation prediction skill in the tropics and extratropics from a global model. Mon. Wea. Rev., 142, 15561569, doi:10.1175/MWR-D-13-00222.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 226 29
PDF Downloads 26 26 10

The Influence of the MJO on the Intraseasonal Variability of Northern Hemisphere Spring Snow Depth

View More View Less
  • 1 Oceanography Department, U.S. Naval Academy, Annapolis, Maryland
© Get Permissions
Restricted access

Abstract

Intraseasonal variability in springtime Northern Hemisphere daily snow depth change (ΔSD) by phase of the MJO was explored in this study. Principal findings of the relationship between ΔSD and the MJO included the following: 1) Statistically significant regions of lagged ΔSD anomalies for multiple phases of the MJO were found in March, April, and May in both North America and Eurasia. 2) In each month, lagged ΔSD anomalies were physically supported by corresponding lagged anomalies of 500-hPa height (Z500) and surface air temperature (SAT). Spearman rank correlation coefficients indicated a moderate to strong relationship between both Z500 and ΔSD and SAT and ΔSD in both Eurasia and North America for phases 5 and 7 in March. In April, a moderately strong relationship between Z500 and ΔSD was found over Eurasia for phase 5, but the relationship between SAT and ΔSD was weak. In May, correlations between ΔSD and both Z500 and SAT over a hemisphere-wide latitude band from 60° to 75°N were close to −0.5 and −0.4, respectively. Given the strength of these statistical relationships, the following physical pathway is proposed for intraseasonal variability of spring snow depth changes: poleward-propagating Rossby waves in response to tropical MJO convection interact with Northern Hemisphere background flow, leading to anomalous troughing and ridging. These anomalous circulation centers then impact daily snow depth change via precipitation processes and anomalies in surface air temperature.

Corresponding author address: Bradford S. Barrett, 572C Holloway Road, Annapolis, MD 21402. E-mail: bbarrett@usna.edu

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Abstract

Intraseasonal variability in springtime Northern Hemisphere daily snow depth change (ΔSD) by phase of the MJO was explored in this study. Principal findings of the relationship between ΔSD and the MJO included the following: 1) Statistically significant regions of lagged ΔSD anomalies for multiple phases of the MJO were found in March, April, and May in both North America and Eurasia. 2) In each month, lagged ΔSD anomalies were physically supported by corresponding lagged anomalies of 500-hPa height (Z500) and surface air temperature (SAT). Spearman rank correlation coefficients indicated a moderate to strong relationship between both Z500 and ΔSD and SAT and ΔSD in both Eurasia and North America for phases 5 and 7 in March. In April, a moderately strong relationship between Z500 and ΔSD was found over Eurasia for phase 5, but the relationship between SAT and ΔSD was weak. In May, correlations between ΔSD and both Z500 and SAT over a hemisphere-wide latitude band from 60° to 75°N were close to −0.5 and −0.4, respectively. Given the strength of these statistical relationships, the following physical pathway is proposed for intraseasonal variability of spring snow depth changes: poleward-propagating Rossby waves in response to tropical MJO convection interact with Northern Hemisphere background flow, leading to anomalous troughing and ridging. These anomalous circulation centers then impact daily snow depth change via precipitation processes and anomalies in surface air temperature.

Corresponding author address: Bradford S. Barrett, 572C Holloway Road, Annapolis, MD 21402. E-mail: bbarrett@usna.edu

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Save