• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , I. Blade, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , D. J. Vimont, , P. Chang, , and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, doi:10.1175/2010JCLI3205.1.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., , M. Ji, , and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, doi:10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Demer, D. A., , J. P. Zwolinski, , K. A. Byers, , G. R. Cutter, , J. S. Renfree, , T. S. Sessions, , and B. J. Macewicz, 2012: Prediction and confirmation of seasonal migration of Pacific sardine (Sardinops segax) in the California Current Ecosystem. Fish Bull., 100, 5270.

    • Search Google Scholar
    • Export Citation
  • Depczynski, M., and et al. , 2013: Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32, 233288, doi:10.1007/s00338-012-0974-0.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , T. Tozuka, , and T. Yamagata, 2010: The Atlantic meridional mode and its coupled variability with the Guinea Dome. J. Climate, 23, 455475, doi:10.1175/2009JCLI3198.1.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , S. K. Behera, , and T. Yamagata, 2013: Predictability of the Ningaloo Niño/Niña. Sci. Rep., 3, doi:10.1038/srep02892.

  • Doi, T., , S. K. Behera, , and T. Yamagata, 2015: An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s. J. Geophys. Res. Oceans, 120, 1388–1396, doi:10.1002/2014JC010562.

    • Search Google Scholar
    • Export Citation
  • Emery, W., , and D. Hamilton, 1985: Atmospheric forcing of interannual variability in the northeast Pacific Ocean: Connections with El Niño. J. Geophys. Res., 90, 857868, doi:10.1029/JC090iC01p00857.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557578, doi:10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, M., , M. J. McPhaden, , S.-P. Xie, , and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, doi:10.1038/srep01277.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., , S. J. Mason, , S. E. Zebiak, , C. F. Ropelewski, , R. Basher, , and M. A. Cane, 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 11111152, doi:10.1002/joc.636.

    • Search Google Scholar
    • Export Citation
  • Griffin, D., , and K. J. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, doi:10.1002/2014GL062433.

    • Search Google Scholar
    • Export Citation
  • Jacobson, L. D., , and A. D. MacCall, 1995: Stock-recruitment models for Pacific sardine (Sardinops segax). Can. J. Fish. Aquat. Sci., 52, 566577, doi:10.1139/f95-057.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and et al. , 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, doi:10.1007/s00382-008-0397-3.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kataoka, T., , T. Tozuka, , S. K. Behera, , and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 1463–1482, doi:10.1007/s00382-013-1961-z.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , S. Masson, , S. Behera, , S. Shingu, , and T. Yamagata, 2005a: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 44744494, doi:10.1175/JCLI3526.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , S. Masson, , E. Roeckner, , G. Madec, , and T. Yamagata, 2005b: Reducing climatology bias in an ocean–atmosphere OGCM with improved coupling physics. J. Climate, 18, 23442360, doi:10.1175/JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , S. Masson, , S. Behera, , and T. Yamagata, 2007: Experimental forecasts of Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, doi:10.1175/JCLI4132.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , S. Behera, , Y. Masumoto, , H. Sakuma, , and T. Yamagata, 2008a: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, 16, doi:10.1029/2007GL032793.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , S. Masson, , S. Behera, , and T. Yamagata, 2008b: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, doi:10.1175/2007JCLI1412.1.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., , and N. E. Graham, 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 21452166, doi:10.1256/003590002320603584.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Nino. Science, 283, 950954, doi:10.1126/science.283.5404.950.

  • Mendelssohn, R., , F. B. Schwing, , and S. J. Bograd, 2003: Spatial structure of subsurface temperature variability in the California Current, 1950-1993. J. Geophys. Res., 108, 3093, doi:10.1029/2002JC001568.

    • Search Google Scholar
    • Export Citation
  • Morioka, Y., , T. Tozuka, , and T. Yamagata, 2010: Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Climate Dyn., 35, 10591072, doi:10.1007/s00382-010-0843-x.

    • Search Google Scholar
    • Export Citation
  • Mysak, L., 1986: El Niño, interannual variability and fisheries in the northeast Pacific Ocean. Can. J. Fish. Aquat. Sci., 43, 464497, doi:10.1139/f86-057.

    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., , and M. Feng, 2013: The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/11. J. Mar. Syst., 111–112, 139156, doi:10.1016/j.jmarsys.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reimer, J. J., , R. Vargas, , D. Rivas, , G. Gaxiola-Castro, , J. M. Hernandez-Ayon, , and R. Lara-Lara, 2015: Sea surface temperature influence on terrestrial gross primary production along the southern California Current. PLoS One, 10, e0125177, doi:10.1371/journal.pone.0125177.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richter, I., , S. K. Behera, , Y. Masumoto, , B. Taguchi, , N. Komori, , and T. Yamagata, 2010: On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophys. Res. Lett., 37, L20604, doi:10.1029/2010GL044461.

    • Search Google Scholar
    • Export Citation
  • Schwing, F. B., , T. Murphree, , L. deWitt, , and P. M. Green, 2002: The evolution of oceanic and atmospheric anomalies in the northeast Pacific during the El Niño and La Niña events of 1995-2001. Prog. Oceanogr., 54, 459491, doi:10.1016/S0079-6611(02)00064-2.

    • Search Google Scholar
    • Export Citation
  • Shannon, L. V., , A. J. Boyd, , G. B. Brundrit, , and J. Taunton-Clark, 1986: On the existence of an El Niño-type phenomenon in the Benguela system. J. Mar. Res., 44, 495520, doi:10.1357/002224086788403105.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., , and C. James, 2002: Altimeter-derived surface circulation in the large-scale NE Pacific gyres: Part 2. 1997-1998 El Niño anomalies. Prog. Oceanogr., 53, 185214, doi:10.1016/S0079-6611(02)00030-7.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., , T. Kataoka, , and T. Yamagata, 2014: Locally and remotely forced atmospheric circulation anomalies of Ningaloo Niño/Niña. Climate Dyn., 43, 2197–2205, doi:10.1007/s00382-013-2044-x.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., , L. Hipps, , R. R. Gillies, , and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013-2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, doi:10.1002/2014GL059748.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., , and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315324, doi:10.1002/j.1477-8696.1998.tb06408.x.

    • Search Google Scholar
    • Export Citation
  • Yuan, C., , and T. Yamagata, 2014: California Niño/Niña. Sci. Rep., 4, 4801, doi:10.1038/srep04801.

  • Yuan, C., , T. Tozuka, , J. Luo, , and T. Yamagata, 2014: Predictability of the subtropical dipole modes in a coupled ocean-atmosphere model. Climate Dyn., 42, 12911308, doi:10.1007/s00382-013-1704-1.

    • Search Google Scholar
    • Export Citation
  • Zinke, J., , A. Rountrey, , M. Feng, , S.-P. Xie, , D. Dissard, , K. Rankenburg, , J. M. Lough, , and M. T. McCulloch, 2014: Corals record long-term Leeuwin Current variability including Ningaloo Niño/Niña since 1975. Nat. Commun., 5, 3607, doi:10.1038/ncomms4607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 12
PDF Downloads 23 23 7

Predictability of the California Niño/Niña

View More View Less
  • 1 Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
© Get Permissions
Restricted access

Abstract

Predictability of a recently discovered regional coupled climate mode called the California Niño (Niña) off Baja California and California is explored using a seasonal prediction system based on the Scale Interaction Experiment-Frontier, version 1 (SINTEX-F1) coupled ocean–atmosphere general circulation model. Because of the skillful prediction of basin-scale El Niño (La Niña), the California Niño (Niña) that co-occurs with El Niño (La Niña) with a peak in boreal winter is found to be predictable at least a couple of seasons ahead. On the other hand, the regional coupled phenomenon peaking in boreal summer without co-occurrence with El Niño (La Niña) is difficult to predict. The difficulty in predicting such an intrinsic regional climate phenomenon may be due to model deficiency in resolving the regional air–sea–land positive feedback processes. The model may also underestimate coastal Kelvin waves with a small offshore scale, which may play an important role in the generation of the California Niño/Niña. It may be improved by increasing horizontal resolution of the ocean component of the coupled model. The present study may provide a guideline to improve seasonal prediction of regional climate modes for important industrial as well as social applications.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0112.s1.

Corresponding author address: Takeshi Doi, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. E-mail: takeshi.doi@jamstec.go.jp

Abstract

Predictability of a recently discovered regional coupled climate mode called the California Niño (Niña) off Baja California and California is explored using a seasonal prediction system based on the Scale Interaction Experiment-Frontier, version 1 (SINTEX-F1) coupled ocean–atmosphere general circulation model. Because of the skillful prediction of basin-scale El Niño (La Niña), the California Niño (Niña) that co-occurs with El Niño (La Niña) with a peak in boreal winter is found to be predictable at least a couple of seasons ahead. On the other hand, the regional coupled phenomenon peaking in boreal summer without co-occurrence with El Niño (La Niña) is difficult to predict. The difficulty in predicting such an intrinsic regional climate phenomenon may be due to model deficiency in resolving the regional air–sea–land positive feedback processes. The model may also underestimate coastal Kelvin waves with a small offshore scale, which may play an important role in the generation of the California Niño/Niña. It may be improved by increasing horizontal resolution of the ocean component of the coupled model. The present study may provide a guideline to improve seasonal prediction of regional climate modes for important industrial as well as social applications.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0112.s1.

Corresponding author address: Takeshi Doi, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. E-mail: takeshi.doi@jamstec.go.jp

Supplementary Materials

    • Supplemental Materials (DOC 2.28 MB)
Save