• Bender, M. A., , and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , I. Ginis, , R. E. Tuleya, , B. Thomas, , and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, doi:10.1175/2007MWR2032.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , T. R. Knutson, , R. E. Tuleya, , J. J. Sirutis, , G. A. Vecchi, , S. T. Garner, , and I. M. Held, 2010: Modeled impact of anthropogenic warming of the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , M. Esch, , N. Keenlyside, , L. Kornblueh, , J.-J. Luo, , and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, doi:10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Callaghan, J., , and S. Power, 2011: Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Climate Dyn., 37, 647–662, doi:10.1007/s00382-010-0883-2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S., , M. Ting, , and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dyn., 40, 15151529, doi:10.1007/s00382-012-1536-4.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and J. Vigh, 2014: QSCAT-R: The QuikSCAT tropical cyclone radial structure dataset. NCAR Tech. Note TN-513+STR, 27 pp.

  • Chavas, D. R., , N. Lin, , and K. A. Emanuel, 2015: A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci., doi:10.1175/JAS-D-15-0014.1, in press.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and et al. , 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., , D. M. Smith, , B. B. B. Booth, , L. Hermanson, , and R. Eade, 2013: Anthropogenic aerosol forcing on Atlantic tropical storms. Nat. Geosci., 6, 534539, doi:10.1038/ngeo1854.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, Cambridge University Press, 165–191.

  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA,110, 12219–12224, doi:10.1073/pnas.1301293110.

  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming—Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 5353–5364, doi:10.1175/JCLI-D-11-00050.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 46444661, doi:10.1175/2011JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., , I.-I. Lin, , C. Chou, , and R.-H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, doi:10.1038/ncomms8188.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Kim, H.-S., , G. A. Vecchi, , T. R. Knutson, , W. G. Anderson, , T. L. Delworth, , A. Rosati, , F. Zeng, , and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 8034–8054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , R. E. Tuleya, , W. Shen, , and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities simulated in a hurricane model with ocean coupling. J. Climate, 14, 24582468, doi:10.1175/1520-0442(2001)014<2458:IOCIWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., and et al. , 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenario. J. Climate, 26, 6591–6617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and et al. , 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, doi:10.1002/grl.50091.

    • Search Google Scholar
    • Export Citation
  • Lin, N., , and D. R. Chavas, 2012: On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res., 117, D09120, doi:10.1029/2011JD017126.

    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., , G. M. Lackmann, , A. Aiyyer, , and K. Hill, 2013: Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Climate, 26, 48764893, doi:10.1175/JCLI-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , R. Mizuta, , and E. Shindo, 2012a: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, doi:10.1007/s00382-011-1223-x.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and et al. , 2012b: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , T. Li, , and A. Kitoh, 2013: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749754, doi:10.1038/nclimate1890.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, doi:10.2151/jmsj.84.259.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , J. Gratz, , C. W. Landsea, , D. Collins, , M. A. Saunders, , and R. Musulin, 2008: Normalized hurricane damages in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Song, J.-J., , Y. Wang, , and L. Wu, 2010: Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res., 115, D12128, doi:10.1029/2009JD013058.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , A. Noda, , and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272, doi:10.2151/jmsj.80.249.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2009: A reduction of global tropical cyclone frequency due to global warming. SOLA, 5, 164167, doi:10.2151/sola.2009-042.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2012: On the mechanism of tropical cyclone frequency changes due to global warming. J. Meteor. Soc. Japan, 90A, 397408, doi:10.2151/jmsj.2012-A24.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., , S. S. Chand, , J. L. McBride, , H. Ye, , and R. A. Dare, 2013: Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Climate, 26, 99469959, doi:10.1175/JCLI-D-13-00010.1.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., , M. DeMaria, , and R. J. Kuligowski, 2007: Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 56–70, doi:10.1175/WAF972.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , S. Fueglistaler, , I. M. Held, , T. R. Knutson, , and M. Zhao, 2013: Impacts of atmospheric temperature trends on tropical cyclone activity. J. Climate, 26, 3877–3891, doi:10.1175/JCLI-D-12-00503.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, doi:10.1038/nclimate1530.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, doi:10.1175/JCLI-D-12-00441.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , D. A. Lavers, , E. Scoccimarro, , M. Zhao, , M. F. Wehner, , G. A. Vecchi, , T. R. Knutson, , and K. A. Reed, 2014: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, doi:10.1175/JCLI-D-13-00780.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., , B.-X. Lin, , C.-T. Chen, , and S.-H. Lo, 2015: Quantifying the effects of long-term climate change on tropical cyclone rainfall using a cloud-resolving model: Examples of two landfall typhoons in Taiwan. J. Climate, 28, 6685, doi:10.1175/JCLI-D-14-00044.1.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., , T. R. Knutson, , and J. A. Smith, 2015: Regional climate model projections of rainfall from U.S. landfalling tropical cyclones. Climate Dyn., doi:10.1007/s00382-015-2544-y, in press.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R., , and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Mon. Wea. Rev., 136, 25922607, doi:10.1175/2007MWR2166.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., , and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution AGCM—Impacts of SST warming and CO2 increase. SOLA, 1, 133136, doi:10.2151/sola.2005-035.

    • Search Google Scholar
    • Export Citation
  • Zhai, A. R., , and J. H. Jiang, 2014: Dependence of US hurricane economic loss on maximum wind speed and storm size. Environ. Res. Lett., 9, 064019, doi:10.1088/1748-9326/9/6/064019.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 6382–6393, doi:10.1175/2010JCLI3837.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 6653–6678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and et al. , 2013: Robust direct effect of increasing atmospheric CO2 concentration on global tropical cyclone frequency: A multi-model inter-comparison. U.S. CLIVAR Variations, 11 (3), U.S. CLIVAR Office, Washington, D.C., 1723.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2517 2517 418
PDF Downloads 1113 1113 224

Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia
  • | 3 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 4 IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
  • | 5 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

Global projections of intense tropical cyclone activity are derived from the Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model (HiRAM; 50-km grid) and the GFDL hurricane model using a two-stage downscaling procedure. First, tropical cyclone genesis is simulated globally using HiRAM. Each storm is then downscaled into the GFDL hurricane model, with horizontal grid spacing near the storm of 6 km, including ocean coupling (e.g., “cold wake” generation). Simulations are performed using observed sea surface temperatures (SSTs) (1980–2008) for a “control run” with 20 repeating seasonal cycles and for a late-twenty-first-century projection using an altered SST seasonal cycle obtained from a phase 5 of CMIP (CMIP5)/representative concentration pathway 4.5 (RCP4.5) multimodel ensemble. In general agreement with most previous studies, projections with this framework indicate fewer tropical cyclones globally in a warmer late-twenty-first-century climate, but also an increase in average cyclone intensity, precipitation rates, and the number and occurrence days of very intense category 4 and 5 storms. While these changes are apparent in the globally averaged tropical cyclone statistics, they are not necessarily present in each individual basin. The interbasin variation of changes in most of the tropical cyclone metrics examined is directly correlated to the variation in magnitude of SST increases between the basins. Finally, the framework is shown to be capable of reproducing both the observed global distribution of outer storm size—albeit with a slight high bias—and its interbasin variability. Projected median size is found to remain nearly constant globally, with increases in most basins offset by decreases in the northwest Pacific.

Corresponding author address: Thomas R. Knutson, NOAA/Geophysical Fluid Dynamics Laboratory, Climate Impacts and Extremes Group, 201 Forrestal Road, Princeton, NJ 08542. E-mail: tom.knutson@noaa.gov

Abstract

Global projections of intense tropical cyclone activity are derived from the Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model (HiRAM; 50-km grid) and the GFDL hurricane model using a two-stage downscaling procedure. First, tropical cyclone genesis is simulated globally using HiRAM. Each storm is then downscaled into the GFDL hurricane model, with horizontal grid spacing near the storm of 6 km, including ocean coupling (e.g., “cold wake” generation). Simulations are performed using observed sea surface temperatures (SSTs) (1980–2008) for a “control run” with 20 repeating seasonal cycles and for a late-twenty-first-century projection using an altered SST seasonal cycle obtained from a phase 5 of CMIP (CMIP5)/representative concentration pathway 4.5 (RCP4.5) multimodel ensemble. In general agreement with most previous studies, projections with this framework indicate fewer tropical cyclones globally in a warmer late-twenty-first-century climate, but also an increase in average cyclone intensity, precipitation rates, and the number and occurrence days of very intense category 4 and 5 storms. While these changes are apparent in the globally averaged tropical cyclone statistics, they are not necessarily present in each individual basin. The interbasin variation of changes in most of the tropical cyclone metrics examined is directly correlated to the variation in magnitude of SST increases between the basins. Finally, the framework is shown to be capable of reproducing both the observed global distribution of outer storm size—albeit with a slight high bias—and its interbasin variability. Projected median size is found to remain nearly constant globally, with increases in most basins offset by decreases in the northwest Pacific.

Corresponding author address: Thomas R. Knutson, NOAA/Geophysical Fluid Dynamics Laboratory, Climate Impacts and Extremes Group, 201 Forrestal Road, Princeton, NJ 08542. E-mail: tom.knutson@noaa.gov
Save