• Adler, R. F., and et al. , 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., , and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, doi:10.1175/2008BAMS2639.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., , Z.-P. Wen, , R. Wu, , Z.-S. Chen, , and P. Zhao, 2014: Interdecadal changes in the relationship between southern China winter-spring precipitation and ENSO. Climate Dyn., 43, 13271338, doi:10.1007/s00382-013-1947-x.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , J.-Y. Tu, , and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, doi:10.1175/2761.1.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., , G. Madec, , A. S. Fischer, , A. Lazar, , and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , S.-P. Xie, , G. Huang, , and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, doi:10.1175/2008JCLI2590.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , S.-P. Xie, , Y.-L. Yang, , X.-T. Zheng, , L. Liu, , and G. Huang, 2013: Indian Ocean variability in the CMIP5 multimodel ensemble: The basin mode. J. Climate, 26, 72407266, doi:10.1175/JCLI-D-12-00678.1.

    • Search Google Scholar
    • Export Citation
  • He, Z., , and R. Wu, 2013: Seasonality of interannual atmosphere–ocean interaction in the South China Sea. J. Oceanogr., 69, 699712, doi:10.1007/s10872-013-0201-9.

    • Search Google Scholar
    • Export Citation
  • He, Z., , and R. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, doi:10.1007/s00382-014-2123-7.

    • Search Google Scholar
    • Export Citation
  • Hu, W.-T., , R. Wu, , and Y. Liu, 2014: Relation of the South China Sea precipitation variability to tropical Indo-Pacific SST anomalies during spring-to-summer transition. J. Climate, 27, 54515467, doi:10.1175/JCLI-D-14-00089.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., 2014: Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region—and its quantification. Climate Dyn., 43, 11591169, doi:10.1007/s00382-013-1881-y.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., , and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349358, doi:10.2151/jmsj.85.349.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., , and Y. Tanimoto, 2012: Influence of sea surface temperature on the intraseasonal variability of the South China Sea summer monsoon. Climate Dyn., 39, 12091218, doi:10.1007/s00382-011-1118-x.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., , Y. Tanimoto, , B. Preethi, , T. Pascal, , and R. Krishnan, 2013: Intraseasonal SST–precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, doi:10.1007/s00382-012-1547-1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on the Asian–Australian monsoon variation. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2009: Possible role of the Indian Ocean in the out-of-phase transition of the Australian to Indian summer monsoon. J. Climate, 22, 18341849, doi:10.1175/2008JCLI2602.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2010: Subseasonal variability during the South China Sea summer monsoon onset. Climate Dyn., 34, 629642, doi:10.1007/s00382-009-0679-4.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. Wang, 2000: Interannual variability of summer monsoon onset over the western North Pacific and the underlying processes. J. Climate, 13, 24832501, doi:10.1175/1520-0442(2000)013<2483:IVOSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155170, doi:10.1007/s00382-005-0003-x.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. P. Kirtman, 2007: Regimes of local air–sea interactions and implications for performance of forced simulations. Climate Dyn., 29, 393410, doi:10.1007/s00382-007-0246-9.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and S.-W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115, D08101, doi:10.1029/2009JD012999.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , Z.-Z. Hu, , and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, doi:10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, doi:10.1175/JCLI3904.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi:10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , S. Yang, , Z.-P. Wen, , G. Huang, , and K. Hu, 2012: Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol., 108, 119133, doi:10.1007/s00704-011-0519-4.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , G. Huang, , Z. Du, , and K. Hu, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193207, doi:10.1007/s00382-013-1820-y.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C.-H. Chang, , Q. Xie, , and D. Wang, 2007: Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations. J. Geophys. Res., 112, C10008, doi:10.1029/2007JC004238.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 17
PDF Downloads 24 24 6

Air–Sea Relationship Associated with Precipitation Anomaly Changes and Mean Precipitation Anomaly over the South China Sea and the Arabian Sea during the Spring to Summer Transition

View More View Less
  • 1 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The period from April to June is the time of transition from spring to summer over the north Indian Ocean and the South China Sea. Analysis shows that precipitation anomaly changes from April to June may indicate summer (June–August) mean precipitation anomalies over the South China Sea and the Arabian Sea. This study documents and compares the evolution of precipitation, surface wind, and sea surface temperature (SST) anomalies during the spring to summer transition corresponding to April–June precipitation anomaly changes and April–June mean precipitation anomalies over the South China Sea and the Arabian Sea. Over the South China Sea, a clear signal of local air–sea interaction is identified corresponding to the precipitation anomaly change, as indicated by a sequence of less precipitation, higher SST, more precipitation, and lower SST. In contrast, the mean precipitation anomaly features a response to remote SST forcing and a local forcing of atmosphere on the ocean. The evolution of surface heat flux anomalies supports the air–sea interaction over the South China Sea during the transition season. Over the Arabian Sea, local SST forcing contributes to both precipitation anomaly changes and mean precipitation anomalies through modulating atmospheric stability. A local negative feedback of atmosphere on SST is observed in the Arabian Sea as in the South China Sea. The surface heat fluxes make a large contribution to local SST change before May in the South China Sea but a small one in the Arabian Sea. Surface heat fluxes are important for local SST change after May in both the South China Sea and the Arabian Sea.

Corresponding author address: Renguang Wu, Institute of Atmospheric Physics, Chinese Academy of Sciences, Building 40, Beichen West Road, Chaoyang District, Beijing 100029, China. E-mail: renguang@mail.iap.ac.cn

Abstract

The period from April to June is the time of transition from spring to summer over the north Indian Ocean and the South China Sea. Analysis shows that precipitation anomaly changes from April to June may indicate summer (June–August) mean precipitation anomalies over the South China Sea and the Arabian Sea. This study documents and compares the evolution of precipitation, surface wind, and sea surface temperature (SST) anomalies during the spring to summer transition corresponding to April–June precipitation anomaly changes and April–June mean precipitation anomalies over the South China Sea and the Arabian Sea. Over the South China Sea, a clear signal of local air–sea interaction is identified corresponding to the precipitation anomaly change, as indicated by a sequence of less precipitation, higher SST, more precipitation, and lower SST. In contrast, the mean precipitation anomaly features a response to remote SST forcing and a local forcing of atmosphere on the ocean. The evolution of surface heat flux anomalies supports the air–sea interaction over the South China Sea during the transition season. Over the Arabian Sea, local SST forcing contributes to both precipitation anomaly changes and mean precipitation anomalies through modulating atmospheric stability. A local negative feedback of atmosphere on SST is observed in the Arabian Sea as in the South China Sea. The surface heat fluxes make a large contribution to local SST change before May in the South China Sea but a small one in the Arabian Sea. Surface heat fluxes are important for local SST change after May in both the South China Sea and the Arabian Sea.

Corresponding author address: Renguang Wu, Institute of Atmospheric Physics, Chinese Academy of Sciences, Building 40, Beichen West Road, Chaoyang District, Beijing 100029, China. E-mail: renguang@mail.iap.ac.cn
Save