• Bellprat, O., , S. Kotlarski, , D. Lüthi, , and C. Schär, 2012: Exploring perturbed physics ensembles in a regional climate model. J. Climate, 25, 45824599, doi:10.1175/JCLI-D-11-00275.1.

    • Search Google Scholar
    • Export Citation
  • Bierbaum, R., and et al. , 2013: A comprehensive review of climate adaptation in the United States: More than before, but less than needed. Mitigation Adapt. Strategies Global Change, 18, 361406, doi:10.1007/s11027-012-9423-1.

    • Search Google Scholar
    • Export Citation
  • Borga, M., , C. Vezzani, , and G. Dalla Fontana, 2005: Regional rainfall depth–duration–frequency equations for an alpine region. Nat. Hazards, 36, 221235, doi:10.1007/s11069-004-4550-y.

    • Search Google Scholar
    • Export Citation
  • Brown, C., , and R. L. Wilby, 2012: An alternate approach to assessing climate risks. Eos, Trans. Amer. Geophys. Union, 93, 401402, doi:10.1029/2012EO410001.

    • Search Google Scholar
    • Export Citation
  • Carlsson-Kanyama, A., , H. Carlsen, , and K.-H. Dreborg, 2013: Barriers in municipal climate change adaptation: Results from case studies using backcasting. Futures, 49, 921, doi:10.1016/j.futures.2013.02.008.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., , R. A. Pielke, , G. Leoncini, 2005: Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J. Geophys. Res., 110, D05108, doi:10.1029/2004JD004721.

    • Search Google Scholar
    • Export Citation
  • Chen, H.-L., , and A. R. Rao, 2002: Testing hydrologic time series for stationarity. J. Hydrol. Eng., 7, 129136, doi:10.1061/(ASCE)1084-0699(2002)7:2(129).

    • Search Google Scholar
    • Export Citation
  • Cheung, W. W. L., , V. W. Y. Lam, , J. L. Sarmiento, , K. Kearney, , R. Watson, , and D. Pauly, 2009: Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish., 10, 235251, doi:10.1111/j.1467-2979.2008.00315.x.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , B. B. Booth, , G. R. Harris, , J. M. Murphy, , D. M. Sexton, , and M. J. Webb, 2006: Towards quantifying uncertainty in transient climate change. Climate Dyn., 27, 127147, doi:10.1007/s00382-006-0121-0.

    • Search Google Scholar
    • Export Citation
  • Crossman, J., , M. Futter, , S. Oni, , P. Whitehead, , L. Jin, , D. Butterfield, , H. Baulch, , and P. Dillon, 2013: Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada. J. Great Lakes Res., 39, 1932, doi:10.1016/j.jglr.2012.11.003.

    • Search Google Scholar
    • Export Citation
  • Diro, G., , A. Tompkins, , and X. Bi, 2012: Dynamical downscaling of ECMWF ensemble seasonal forecasts over East Africa with RegCM3. J. Geophys. Res., 117, D16103, doi:10.1029/2011JD016997.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., and et al. , 2012: Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci., 4, 1137, doi:10.1146/annurev-marine-041911-111611.

    • Search Google Scholar
    • Export Citation
  • Fowler, H., , S. Blenkinsop, , and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Haines, A., , R. S. Kovats, , D. Campbell-Lendrum, , and C. Corvalan, 2006: Climate change and human health: Impacts, vulnerability and public health. Public Health, 120, 585596, doi:10.1016/j.puhe.2006.01.002.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , M. Sato, , and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Harley, C. D. G., and et al. , 2006: The impacts of climate change in coastal marine systems. Ecol. Lett., 9, 228241, doi:10.1111/j.1461-0248.2005.00871.x.

    • Search Google Scholar
    • Export Citation
  • He, J., , C. Valeo, , and F. Bouchart, 2006: Enhancing urban infrastructure investment planning practices for a changing climate. Water Sci. Technol., 53, 1320, doi:10.2166/wst.2006.292.

    • Search Google Scholar
    • Export Citation
  • He, J., , C. Valeo, , A. Chu, , and N. F. Neumann, 2011: Stormwater quantity and quality response to climate change using artificial neural networks. Hydrol. Processes, 25, 12981312, doi:10.1002/hyp.7904.

    • Search Google Scholar
    • Export Citation
  • He, J., , A. Anderson, , and C. Valeo, 2015: Bias compensation in flood frequency analysis. Hydrol. Sci. J., 60, 381401, doi:10.1080/02626667.2014.885651.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., , R. Mahendran, , S. Koirala, , L. Konoshima, , D. Yamazaki, , S. Watanabe, , H. Kim, , and S. Kanae, 2013: Global flood risk under climate change. Nat. Climate Change, 3, 816821, doi:10.1038/nclimate1911.

    • Search Google Scholar
    • Export Citation
  • Hogg, W. D., , D. Carr, , B. Routledge, 1989: Rainfall intensity-duration frequency values for Canadian locations. Environment Canada Atmospheric Environment Service Rep., 17 pp.

  • Hyndman, R. J., , and Y. Fan, 1996: Sample quantiles in statistical packages. Amer. Stat., 50, 361365.

  • IPCC, 2000: Summary for policymakers. Special Report on Emissions Scenarios, N. Nakicenovic and R. Swart, Eds., Cambridge University Press, 1–20. [Available online at https://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf.]

  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Synthesis Report, R. K. Pachauri et al., Eds., Cambridge University Press, 1–31. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf.]

  • Jha, S. K., , G. Mariethoz, , J. P. Evans, , and M. F. McCabe, 2013: Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations. Water Resour. Res., 49, 245259, doi:10.1029/2012WR012602.

    • Search Google Scholar
    • Export Citation
  • Jones, H. P., , D. G. Hole, , and E. S. Zavaleta, 2012: Harnessing nature to help people adapt to climate change. Nat. Climate Change, 2, 504509, doi:10.1038/nclimate1463.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., , M. Noguer, , D. C. Hassell, , D. Hudson, , S. S. Wilson, , G. J. Jenkins, , and J. F. B. Mitchell, 2004: Generating high resolution climate change scenarios using PRECIS. UNDP/Met Office Hadley Centre Rep., 40 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/6/5/PRECIS_Handbook.pdf.]

  • Jordan, Y. C., , A. Ghulam, , and M. L. Chu, 2014: Assessing the impacts of future urban development patterns and climate changes on total suspended sediment loading in surface waters using geoinformatics. J. Environ. Inf., 24, 6579.

    • Search Google Scholar
    • Export Citation
  • Ling, J., , M. L. Wu, , Y. F. Chen, , Y. Y. Zhang, , and J. D. Dong, 2014: Identification of spatial and temporal patterns of coastal waters in Sanya Bay, South China Sea by chemometrics. J. Environ. Inf., 23, 3743, doi:10.3808/jei.201400255.

    • Search Google Scholar
    • Export Citation
  • Ma, Z. Z., , Z. J. Wang, , T. Xia, , C. J. Gippel, , and R. Speed, 2014: Hydrograph-based hydrologic alteration assessment and its application to the Yellow River. J. Environ. Inf., 23, 113, doi:10.3808/jei.201400252.

    • Search Google Scholar
    • Export Citation
  • Madsen, H., , P. S. Mikkelsen, , D. Rosbjerg, , and P. Harremoës, 2002: Regional estimation of rainfall intensity-duration-frequency curves using generalized least squares regression of partial duration series statistics. Water Resour. Res., 38, 1239, doi:10.1029/2001WR001125.

    • Search Google Scholar
    • Export Citation
  • Madsen, H., , K. Arnbjerg-Nielsen, , and P. S. Mikkelsen, 2009: Update of regional intensity–duration–frequency curves in Denmark: Tendency towards increased storm intensities. Atmos. Res., 92, 343349, doi:10.1016/j.atmosres.2009.01.013.

    • Search Google Scholar
    • Export Citation
  • Mailhot, A., , S. Duchesne, , D. Caya, , and G. Talbot, 2007: Assessment of future change in intensity–duration–frequency (IDF) curves for southern Quebec using the Canadian Regional Climate Model (CRCM). J. Hydrol., 347, 197210, doi:10.1016/j.jhydrol.2007.09.019.

    • Search Google Scholar
    • Export Citation
  • McMichael, A. J., , R. E. Woodruff, , and S. Hales, 2006: Climate change and human health: Present and future risks. Lancet, 367, 859869, doi:10.1016/S0140-6736(06)68079-3.

    • Search Google Scholar
    • Export Citation
  • McSweeney, C. F., , and R. G. Jones, 2010: Selecting members of the ‘QUMP’ perturbed-physics ensemble for use with PRECIS. Met Office Hadley Centre Rep., 8 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/e/3/SelectingCGMsToDownscale.pdf.]

  • McSweeney, C. F., , R. G. Jones, , and B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 71007121, doi:10.1175/JCLI-D-11-00526.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., and et al. , 2009: UK climate projections: Climate change projections. Met Office Hadley Centre Rep. UKCP09, 190 pp. [Available online at http://ukclimateprojections.metoffice.gov.uk/media.jsp?mediaid=87894&filetype=pdf.]

  • NLWIS, 2007: Daily 10 km raster-gridded climate dataset for Canada 1961-2003, version 1.0. National Land and Water Information Service, Agriculture and Agri-Food Canada, accessed 10 December 2014. [Available online at https://www.mcgill.ca/library/find/maps/dgcd10km.]

  • Ontario Ministry of the Environment, 2011a: Climate action: Adapting to change, protecting our future. Ontario Ministry of the Environment Rep. PIBS 8291e, 13 pp. [Available online at http://www.climateontario.ca/doc/publications/ClimateAction-AdaptingToChangeProtectingOurFuture2011.pdf.]

  • Ontario Ministry of the Environment, 2011b: Climate ready: Ontario’s adaptation strategy and action plan. Ontario Ministry of the Environment Rep. PIBS 8292e, 120 pp. [Available online at http://www.abca.on.ca/downloads/MOE_Climate_Ready_ENG.pdf.]

  • Parmesan, C., , and G. Yohe, 2003: A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 3742, doi:10.1038/nature01286.

    • Search Google Scholar
    • Export Citation
  • Patz, J. A., , D. Campbell-Lendrum, , T. Holloway, , and J. A. Foley, 2005: Impact of regional climate change on human health. Nature, 438, 310317, doi:10.1038/nature04188.

    • Search Google Scholar
    • Export Citation
  • Piao, S., and et al. , 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, doi:10.1038/nature09364.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and et al. , 2013: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, doi:10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • Poloczanska, E. S., and et al. , 2013: Global imprint of climate change on marine life. Nat. Climate Change, 3, 919925, doi:10.1038/nclimate1958.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., , E. Vanvyve, , J. O. Pinto, , A. J. Monaghan, , C. A. Davis, , and G. S. Poulos, 2013: Selecting representative days for more efficient dynamical climate downscaling: Application to wind energy. J. Appl. Meteor. Climatol., 52, 4763, doi:10.1175/JAMC-D-12-016.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, K., , C. Valeo, , M. Ryan, , A. Chu, , and M. Iwanyshyn, 2009: Modelling aquatic vegetation and dissolved oxygen after a flood event in the Bow River, Alberta, Canada. Can. J. Civ. Eng., 36, 492503, doi:10.1139/L08-126.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., , C. Frei, , and P. L. Vidale, 2006: Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol., 26, 679689, doi:10.1002/joc.1287.

    • Search Google Scholar
    • Export Citation
  • Surampalli, R. Y., , T. C. Zhang, , C. Ojha, , R. Tyagi, , and C. Kao, 2013: Climate Change Modeling, Mitigation, and Adaptation. American Society of Civil Engineers, 728 pp.

  • Valeo, C., , Z. Xiang, , F.-C. Bouchart, , P. Yeung, , and M. Ryan, 2007: Climate change impacts in the Elbow River watershed. Can. Water Resour. J., 32, 285302, doi:10.4296/cwrj3204285.

    • Search Google Scholar
    • Export Citation
  • Van Vuuren, D. P., and et al. , 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Veneziano, D., , and P. Furcolo, 2002: Multifractality of rainfall and scaling of intensity‐duration‐frequency curves. Water Resour. Res., 38, 1306, doi:10.1029/2001WR000372.

    • Search Google Scholar
    • Export Citation
  • Wang, L. Z., , Y. F. Huang, , L. Wang, , and G. Q. Wang, 2014: Pollutant flushing characterizations of stormwater runoff and their correlation with land use in a rapidly urbanizing watershed. J. Environ. Inf., 23, 4454, doi:10.3808/jei.201400256.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and et al. , 2013: A stepwise cluster analysis approach for downscaled climate projection—A Canadian case study. Environ. Modell. Software, 49, 141151, doi:10.1016/j.envsoft.2013.08.006.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , G. Huang, , Q. Lin, , and J. Liu, 2014a: High-resolution probabilistic projections of temperature changes over Ontario, Canada. J. Climate, 27, 52595284, doi:10.1175/JCLI-D-13-00717.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , G. Huang, , Q. Lin, , X. Nie, , and J. Liu, 2014b: High‐resolution temperature and precipitation projections over Ontario, Canada: A coupled dynamical‐statistical approach. Quart. J. Roy. Meteor. Soc., 141, 11371146, doi:10.1002/qj.2421.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , G. Huang, , and J. Liu, 2014c: Projected increases in intensity and frequency of rainfall extremes through a regional climate modeling approach. J. Geophys. Res. Atmos., 119, 13 271–13 286, doi:10.1002/2014JD022564.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , G. Huang, , and J. Liu, 2015: Projected increases in near-surface air temperature over Ontario, Canada: A regional climate modeling approach. Climate Dyn., doi:10.1007/s00382-014-2387-y, in press.

    • Search Google Scholar
    • Export Citation
  • Wende, W., , A. Bond, , N. Bobylev, , and L. Stratmann, 2012: Climate change mitigation and adaptation in strategic environmental assessment. Environ. Impact Assess. Rev., 32, 8893, doi:10.1016/j.eiar.2011.04.003.

    • Search Google Scholar
    • Export Citation
  • Whitehead, P., , R. Wilby, , R. Battarbee, , M. Kernan, , and A. J. Wade, 2009: A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J., 54, 101123, doi:10.1623/hysj.54.1.101.

    • Search Google Scholar
    • Export Citation
  • Willems, P., , K. Arnbjerg-Nielsen, , J. Olsson, , and V. Nguyen, 2012: Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res., 103, 106118, doi:10.1016/j.atmosres.2011.04.003.

    • Search Google Scholar
    • Export Citation
  • Wilson, S., , D. Hassell, , D. Hein, , C. Morrell, , S. Tucker, , R. Jones, , and R. Taylor, 2011: Installing and using the Hadley Centre regional climate modelling system, PRECIS. Met Office Hadley Centre Rep., 157 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/o/5/tech_man_vn1.9.3.pdf.pdf.]

  • Yang, W., , and Z. F. Yang, 2014: Evaluation of sustainable environmental flows based on the valuation of ecosystem services: A case study for the Baiyangdian Wetland, China. J. Environ. Inf., 24, 90100, doi:10.3808/jei.201400276.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 195 57
PDF Downloads 113 113 23

Ensemble Projections of Regional Climatic Changes over Ontario, Canada

View More View Less
  • 1 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, Canada
  • | 2 Institute for Energy, Environment and Sustainability Research, UR–NCEPU, University of Regina, Regina, Saskatchewan, Canada, and Institute for Energy, Environment and Sustainability Research, UR–NCEPU, North China Electric Power University, Beijing, China
  • | 3 Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada
  • | 4 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, Canada
© Get Permissions
Restricted access

Abstract

In this study, high-resolution climate projections over Ontario, Canada, are developed through an ensemble modeling approach to provide reliable and ready-to-use climate scenarios for assessing plausible effects of future climatic changes at local scales. The Providing Regional Climates for Impacts Studies (PRECIS) regional modeling system is adopted to conduct ensemble simulations in a continuous run from 1950 to 2099, driven by the boundary conditions from a HadCM3-based perturbed physics ensemble. Simulations of temperature and precipitation for the baseline period are first compared to the observed values to validate the performance of the ensemble in capturing the current climatology over Ontario. Future projections for the 2030s, 2050s, and 2080s are then analyzed to help understand plausible changes in its local climate in response to global warming. The analysis indicates that there is likely to be an obvious warming trend with time over the entire province. The increase in average temperature is likely to be varying within [2.6, 2.7]°C in the 2030s, [4.0, 4.7]°C in the 2050s, and [5.9, 7.4]°C in the 2080s. Likewise, the annual total precipitation is projected to increase by [4.5, 7.1]% in the 2030s, [4.6, 10.2]% in the 2050s, and [3.2, 17.5]% in the 2080s. Furthermore, projections of rainfall intensity–duration–frequency (IDF) curves are developed to help understand the effects of global warming on extreme precipitation events. The results suggest that there is likely to be an overall increase in the intensity of rainfall storms. Finally, a data portal named Ontario Climate Change Data Portal (CCDP) is developed to ensure decision-makers and impact researchers have easy and intuitive access to the refined regional climate change scenarios.

Corresponding author address: Guohe Huang, Institute for Energy, Environment and Sustainability Research, UR–NCEPU, University of Regina, 3737 Wascana Parkway, Regina SK S4S 0A2, Canada. E-mail: huang@iseis.org

Abstract

In this study, high-resolution climate projections over Ontario, Canada, are developed through an ensemble modeling approach to provide reliable and ready-to-use climate scenarios for assessing plausible effects of future climatic changes at local scales. The Providing Regional Climates for Impacts Studies (PRECIS) regional modeling system is adopted to conduct ensemble simulations in a continuous run from 1950 to 2099, driven by the boundary conditions from a HadCM3-based perturbed physics ensemble. Simulations of temperature and precipitation for the baseline period are first compared to the observed values to validate the performance of the ensemble in capturing the current climatology over Ontario. Future projections for the 2030s, 2050s, and 2080s are then analyzed to help understand plausible changes in its local climate in response to global warming. The analysis indicates that there is likely to be an obvious warming trend with time over the entire province. The increase in average temperature is likely to be varying within [2.6, 2.7]°C in the 2030s, [4.0, 4.7]°C in the 2050s, and [5.9, 7.4]°C in the 2080s. Likewise, the annual total precipitation is projected to increase by [4.5, 7.1]% in the 2030s, [4.6, 10.2]% in the 2050s, and [3.2, 17.5]% in the 2080s. Furthermore, projections of rainfall intensity–duration–frequency (IDF) curves are developed to help understand the effects of global warming on extreme precipitation events. The results suggest that there is likely to be an overall increase in the intensity of rainfall storms. Finally, a data portal named Ontario Climate Change Data Portal (CCDP) is developed to ensure decision-makers and impact researchers have easy and intuitive access to the refined regional climate change scenarios.

Corresponding author address: Guohe Huang, Institute for Energy, Environment and Sustainability Research, UR–NCEPU, University of Regina, 3737 Wascana Parkway, Regina SK S4S 0A2, Canada. E-mail: huang@iseis.org
Save