• Balmaseda, M. A., , L. Ferranti, , F. Molteni, , and T. N. Palmer, 2010: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions. Quart. J. Roy. Meteor. Soc., 136, 16551664, doi:10.1002/qj.661.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47284733, doi:10.1002/grl.50880.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, doi:10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., , R. Vautard, , C. Cassou, , P. Yiou, , V. Masson-Delmotte, , and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, doi:10.1029/2010GL044613.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. Tomas, , M. Alexander, , and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , J. Wallace, , D. Battisti, , E. Steig, , A. Galland, , H.-J. Kim, , and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: The recent trend and variance increases of the annular mode. J. Climate, 15, 8894, doi:10.1175/1520-0442(2002)015<0088:TRTAVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Hall, R., , R. Erdélyi, , E. Hanna, , J. M. Jones, , and A. A. Scaife, 2015: Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol., 35, 1697–1720, doi:10.1002/joc.4121 .

    • Search Google Scholar
    • Export Citation
  • Handorf, D., , R. Jaiser, , K. Dethloff, , A. Rinke, , and J. Cohen, 2015: Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections. Geophys. Res. Lett., 42, 23672377, doi:10.1002/2015GL063203.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., , J. M. Jones, , J. Cappelen, , S. H. Mernild, , L. Wood, , K. Steffen, , and P. Huybrechts, 2013: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., 33, 862880, doi:10.1002/joc.3475.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., , T. E. Cropper, , P. D. Jones, , A. A. Scaife, , and R. Allan, 2015: Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index. Int. J. Climatol., 35, 2540–2554, doi:10.1002/joc.4157.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. Academic Press, 391 pp.

  • Hopsch, S., , J. Cohen, , and K. Dethloff, 2012: Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus, 64A, 18624, doi:10.3402/tellusa.v64i0.18624.

    • Search Google Scholar
    • Export Citation
  • Jaiser, R., , K. Dethloff, , D. Handorf, , A. Rinke, , and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, doi:10.3402/tellusa.v64i0.11595.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , M. A. Kasper, , T. Semmler, , and S. Serrar, 2014: Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett., 41, 36763680, doi:10.1002/2014GL059961.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., , S.-W. Son, , S.-K. Min, , J.-H. Jeong, , S.-J. Kim, , X. Zhang, , T. Shim, , and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., , C.-C. Hong, , and H.-H. Hsu, 2015: Compounding effects of warm SST and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 16121618, doi:10.1002/2014GL062956.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., , A. Butler, , B. Jha, , A. Kumar, , and W. Wang, 2010: Unusual extremes in the negative phase of the Arctic Oscillation during 2009. Geophys. Res. Lett., 37, L10704, doi:10.1029/2010GL043338.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , C. A. Curry, , H. Wang, , M. Song, , and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., , R. Senan, , R. E. Benestad, , and A. Melsom, 2012: Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean-atmosphere hindcasts. Climate Dyn., 38, 24372448, doi:10.1007/s00382-011-1169-z.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and M. Wang, 2005: The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32, L06701, doi:10.1029/2004GL021752.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , J. Francis, , R. Hall, , E. Hanna, , S.-J. Kim, , and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, doi:10.1175/JCLI-D-14-00822.1, in press.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 2014: Record-breaking winters and global climate change. Science, 344, 803804, doi:10.1126/science.1255147.

  • Perlwitz, J., , M. Hoerling, , and R. Dole, 2015: Arctic tropospheric warming causes and linkages to lower latitudes. J. Climate, 28, 21542167, doi:10.1175/JCLI-D-14-00095.1.

    • Search Google Scholar
    • Export Citation
  • Rinke, A., , K. Dethloff, , W. Dorn, , D. Handorf, , and J. C. Moore, 2013: Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies. J. Geophys. Res. Atmos., 118, 76987714, doi:10.1002/jgrd.50584.

    • Search Google Scholar
    • Export Citation
  • Santos, J., , T. Woollings, , and J. Pinto, 2013: Are the winters of 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream? Mon. Wea. Rev., 141, 36263640, doi:10.1175/MWR-D-13-00024.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, doi:10.1002/grl.50174.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , C. Deser, , I. Simmonds, , and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , A. P. Barrett, , and J. J. Cassano, 2011: Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J. Geophys. Res., 116, D07104, doi:10.1029/2010JD015127.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703–708, doi:10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Sokolova, E., , K. Dethloff, , A. Rinke, , and A. Benkel, 2007: Planetary and synoptic scale adjustment of the Arctic atmosphere to sea ice cover changes. Geophys. Res. Lett., 34, L17816, doi:10.1029/2007GL030218.

    • Search Google Scholar
    • Export Citation
  • Strey, S. T., , W. L. Chapman, , and J. E. Walsh, 2010: The 2007 sea ice minimum: Impacts on the Northern Hemisphere atmosphere in late autumn and early winter. J. Geophys. Res., 115, D23103, doi:10.1029/2009JD013294.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , X. Zhang, , X. Yang, , and J. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Attribution of climate variations and trends to human influences and natural variability. Wiley Interdiscip. Rev.: Climate Change, 2, 925930, doi:10.1002/wcc.142.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. T. Fasullo, , and T. G. Shepherd, 2015: Attribution of climate extreme events. Nat. Climate Change, 5, 725–730, doi:10.1038/nclimate2657.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , H. Liu, , and S. Lee, 2010: The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., 11, 161168, doi:10.1002/asl.278.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , A. Hannachi, , and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 12
PDF Downloads 41 41 8

Increased Variability in the Early Winter Subarctic North American Atmospheric Circulation

View More View Less
  • 1 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
  • | 2 Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The last decade shows increased variability in the Arctic Oscillation (AO) index for December. Over eastern North America such increased variability depended on amplification of the climatological longwave atmospheric circulation pattern. Recent negative magnitudes of the AO have increased geopotential thickness west of Greenland and cold weather in the central and eastern United States. Although the increased variance in the AO is statistically significant based on 9-yr running standard deviations from 1950 to 2014, one cannot necessarily robustly attribute the increase to steady changes in external sources (sea temperatures, sea ice) rather than a chaotic view of internal atmospheric variability; this is due to a relatively short record and a review of associated atmospheric dynamics. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influence can reinforce the regional geopotential height pattern. Such reinforcement suggests a conditional or state dependence on whether an Arctic influence will impact subarctic severe weather, based on different circulation regimes. A key conclusion is the importance of recent variability over potential trends in Arctic and subarctic atmospheric circulation. Continued thermodynamic Arctic changes are suggested as a Bayesian prior leading to a probabilistic approach for potential subarctic weather linkages and the potential for improving seasonal forecasts.

Denotes Open Access content.

Joint Institute for the Study of Atmosphere and Ocean Contribution Number 2442 and Pacific Marine Environmental Laboratory Contribution Number 4327.

Corresponding author address: James E. Overland, NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115. E-mail: james.e.overland@noaa.gov

Abstract

The last decade shows increased variability in the Arctic Oscillation (AO) index for December. Over eastern North America such increased variability depended on amplification of the climatological longwave atmospheric circulation pattern. Recent negative magnitudes of the AO have increased geopotential thickness west of Greenland and cold weather in the central and eastern United States. Although the increased variance in the AO is statistically significant based on 9-yr running standard deviations from 1950 to 2014, one cannot necessarily robustly attribute the increase to steady changes in external sources (sea temperatures, sea ice) rather than a chaotic view of internal atmospheric variability; this is due to a relatively short record and a review of associated atmospheric dynamics. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influence can reinforce the regional geopotential height pattern. Such reinforcement suggests a conditional or state dependence on whether an Arctic influence will impact subarctic severe weather, based on different circulation regimes. A key conclusion is the importance of recent variability over potential trends in Arctic and subarctic atmospheric circulation. Continued thermodynamic Arctic changes are suggested as a Bayesian prior leading to a probabilistic approach for potential subarctic weather linkages and the potential for improving seasonal forecasts.

Denotes Open Access content.

Joint Institute for the Study of Atmosphere and Ocean Contribution Number 2442 and Pacific Marine Environmental Laboratory Contribution Number 4327.

Corresponding author address: James E. Overland, NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115. E-mail: james.e.overland@noaa.gov
Save