Variability of Hawaiian Winter Rainfall during La Niña Events since 1956

Christopher F. O’Connor Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Christopher F. O’Connor in
Current site
Google Scholar
PubMed
Close
,
Pao-Shin Chu Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pao-Shin Chu in
Current site
Google Scholar
PubMed
Close
,
Pang-Chi Hsu International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disasters of the Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Pang-Chi Hsu in
Current site
Google Scholar
PubMed
Close
, and
Kevin Kodama Honolulu National Weather Service, Honolulu, Hawaii

Search for other papers by Kevin Kodama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rainfall in Hawaii during La Niña years has undergone abnormal variability since the early 1980s. Traditionally, Hawaii receives greater-than-normal precipitation during the La Niña wet seasons. Recently, La Niña years have experienced less-than-normal rainfall. A drying trend in Hawaiian precipitation during La Niña years is evident. A changepoint analysis determined that the shift in precipitation occurred in 1983, forming the two epochs used for comparison in this study. The first epoch (E1) runs from 1956 to 1982 and the second epoch (E2) from 1983 to 2010. Location-specific changes in rainfall anomalies from E1 to E2 throughout the Hawaiian Islands are examined, illustrating that the greatest difference in rainfall between epochs is found on the climatologically drier sides (i.e., south and west) of the islands. Variations in tropical sea surface temperatures and circulation features in the northern Pacific Ocean have changed during La Niña wet seasons, thus changing La Niña–year rainfall.

The strengthening, broadening, and westward shifting of the eastern North Pacific subtropical high, coupled with an eastward elongation and intensification of the subtropical jet stream, are two main influences when considering the lack of precipitation during the recent La Niña wet seasons. Moisture transport analysis shows that variations in circulation structures play a dominant role in the reduction of moisture flux convergence in the Hawaiian region during the second epoch. Additionally, a storm-track analysis reveals that the changes found in the aforementioned circulation features are creating a less favorable environment for the development of Kona lows and midlatitude fronts in the vicinity of Hawaii.

Corresponding author address: Christopher F. O’Connor, Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, 2525 Correa Road, HIG 318, Honolulu, HI 96822. E-mail: chriso949@gmail.com

Abstract

Rainfall in Hawaii during La Niña years has undergone abnormal variability since the early 1980s. Traditionally, Hawaii receives greater-than-normal precipitation during the La Niña wet seasons. Recently, La Niña years have experienced less-than-normal rainfall. A drying trend in Hawaiian precipitation during La Niña years is evident. A changepoint analysis determined that the shift in precipitation occurred in 1983, forming the two epochs used for comparison in this study. The first epoch (E1) runs from 1956 to 1982 and the second epoch (E2) from 1983 to 2010. Location-specific changes in rainfall anomalies from E1 to E2 throughout the Hawaiian Islands are examined, illustrating that the greatest difference in rainfall between epochs is found on the climatologically drier sides (i.e., south and west) of the islands. Variations in tropical sea surface temperatures and circulation features in the northern Pacific Ocean have changed during La Niña wet seasons, thus changing La Niña–year rainfall.

The strengthening, broadening, and westward shifting of the eastern North Pacific subtropical high, coupled with an eastward elongation and intensification of the subtropical jet stream, are two main influences when considering the lack of precipitation during the recent La Niña wet seasons. Moisture transport analysis shows that variations in circulation structures play a dominant role in the reduction of moisture flux convergence in the Hawaiian region during the second epoch. Additionally, a storm-track analysis reveals that the changes found in the aforementioned circulation features are creating a less favorable environment for the development of Kona lows and midlatitude fronts in the vicinity of Hawaii.

Corresponding author address: Christopher F. O’Connor, Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, 2525 Correa Road, HIG 318, Honolulu, HI 96822. E-mail: chriso949@gmail.com
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bassiouni, M., and D. S. Oki, 2013: Trends and shifts in streamflow in Hawai‘i, 1913–2008. Hydrol. Processes, 27, 1484–1500, doi:10.1002/hyp.9298.

    • Search Google Scholar
    • Export Citation
  • Caruso, S. J., and S. Businger, 2006: Subtropical cyclogenesis over the central North Pacific. Wea. Forecasting, 21, 193205, doi:10.1175/WAF914.1.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., and D. H. Peterson, 1989: The influence of North Pacific atmospheric circulation on streamflow in the West. Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr., Vol. 55, 375–397.

  • Chen, Y.-L., and A. J. Nash, 1994: Diurnal variation of surface airflow and rainfall frequencies on the island of Hawaii. Mon. Wea. Rev., 122, 3456, doi:10.1175/1520-0493(1994)122<0034:DVOSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1989: Hawaiian drought and the Southern Oscillation. Int. J. Climatol., 9, 619631, doi:10.1002/joc.3370090606.

  • Chu, P.-S., 1995: Hawaii rainfall anomalies and El Niño. J. Climate, 8, 16971703, doi:10.1175/1520-0442(1995)008<1697:HRAAEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian Islands. J. Climate, 18, 47964813, doi:10.1175/JCLI3578.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., A. J. Nash, and F. Porter, 1993: Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. J. Climate, 6, 14571462, doi:10.1175/1520-0442(1993)006<1457:DSOTCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., W. Yan, and F. Fujioka, 2002: Fire-climate relationships and long-lead wildfire prediction for Hawaii. Int. J. Wildland Fire, 11, 2531, doi:10.1071/WF01040.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., Y. R. Chen, and T. A. Schroeder, 2010: Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Climate, 23, 48814900, doi:10.1175/2010JCLI3484.1.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, doi:10.1029/2010JD014192.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and T. W. Giambelluca, 2012: Changes in atmospheric circulation patterns associated with high and low rainfall regimes in the Hawaiian Islands region on multiple time scales. Global Planet. Change, 98-99, 97108, doi:10.1016/j.gloplacha.2012.08.011.

    • Search Google Scholar
    • Export Citation
  • Garza, J., P.-S. Chu, C. Norton, and T. A. Schroeder, 2012: Changes of the prevailing trade winds over the Islands of Hawaii and the North Pacific. J. Geophys. Res., 117, D11109, doi:10.1029/2011JD016888.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725, doi:10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • He, X.-Z., and D.-Y. Gong, 2002: Interdecadal change in western Pacific subtropical high and climatic effects. J. Geogr. Sci., 12, 202209, doi:10.1007/BF02837475.

    • Search Google Scholar
    • Export Citation
  • Johnson, N., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodama, K. R., and G. M. Barnes, 1997: Heavy rain events over the south-facing slopes of Hawaii: Attendant conditions. Wea. Forecasting, 12, 347367, doi:10.1175/1520-0434(1997)012<0347:HREOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., F. Yang, L. Goddard, and S. Schubert, 2004: Differing trends in the tropical surface temperatures and precipitation over land and oceans. J. Climate, 17, 653664, doi:10.1175/1520-0442(2004)017<0653:DTITTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, and M. L’Heureux, 2010: Are tropical SST trends changing the global teleconnection during La Niña? Geophys. Res. Lett., 37, L12702, doi:10.1029/2010GL043394; Corrigendum, 39, L21709, doi:10.1029/2012GL054139.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • Lian, Y., J.-Y. You, R. Sparks, and M. Demissie, 2012: Impact of human activities to hydrologic alterations on the Illinois River. J. Hydrol. Eng., 17, 537546, doi:10.1061/(ASCE)HE.1943-5584.0000465.

    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 1982: Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. Meteor., 21, 17131729, doi:10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Non-parametric test against trends. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., and S. Businger, 2001: Synoptic structure and evolution of a Kona low. Wea. Forecasting, 16, 8198, doi:10.1175/1520-0434(2001)016<0081:SSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NCDC, 1981: NCDC TD3200 U.S. cooperative summary of day, 1890(1948)-cont. Research Data Archive at NCAR, accessed 17 September 2014. [Available online at http://rda.ucar.edu/datasets/ds510.0/.]

  • Newman, M., S. I. Shin, and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, doi:10.1029/2011GL047658.

    • Search Google Scholar
    • Export Citation
  • Norton, C., P.-S. Chu, and T. A. Schroeder, 2011: Estimating changes in future heavy rainfall events for Oahu, Hawaii: A statistical downscaling approach. J. Geophys. Res., 116, D17110, doi:10.1029/2011JD015641.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and J. E. Martin, 2004: A synoptic climatology of the subtropical Kona storm. Mon. Wea. Rev., 132, 15021517, doi:10.1175/1520-0493(2004)132<1502:ASCOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paltridge, G., A. Arking, and M. Pook, 2009: Trends in middle- and upper-tropospheric humidity from NCEP reanalysis data. Theor. Appl. Climatol., 98, 351359, doi:10.1007/s00704-009-0117-x.

    • Search Google Scholar
    • Export Citation
  • Pettitt, A. N., 1979: A non-parametric approach to the change-point detection. Appl. Stat., 28, 126135, doi:10.2307/2346729.

  • Ramage, C. S., 1962: The subtropical cyclone. J. Geophys. Res., 67, 14011411, doi:10.1029/JZ067i004p01401.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., 1981: Characteristics of local winds in northwest Hawaii. J. Appl. Meteor., 20, 874881, doi:10.1175/1520-0450(1981)020<0874:COLWIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., 1993: Climate controls. Prevailing Trade Winds, M. Sanderson, Ed., University of Hawaii Press, 12–36.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Timm, O., and H. F. Diaz, 2009: Synoptic-statistical approach to regional downscaling of IPCC twenty-first-century climate projections: Seasonal rainfall over the Hawaiian Islands. J. Climate, 22, 42614280, doi:10.1175/2009JCLI2833.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365, doi:10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tu, C.-C., and Y.-L. Chen, 2011: Favorable conditions for the development of a heavy rainfall event over Oahu during the 2006 wet period. Wea. Forecasting, 26, 280300, doi:10.1175/2010WAF2222449.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., B. Kirtman, J.-S. Kug, W. Park, and M. Latif, 2011: Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys. Res. Lett., 38, L02704, doi:10.1029/2010GL045886.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, doi:10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1088 294 22
PDF Downloads 414 123 10