Cross–Time Scale Interactions and Rainfall Extreme Events in Southeastern South America for the Austral Summer. Part I: Potential Predictors

Á. G. Muñoz International Research Institute for Climate and Society, The Earth Institute, Columbia University, Palisades, New York, and Centro de Modelado Científico, Universidad del Zulia, Maracaibo, Venezuela

Search for other papers by Á. G. Muñoz in
Current site
Google Scholar
PubMed
Close
,
L. Goddard International Research Institute for Climate and Society, The Earth Institute, Columbia University, Palisades, New York

Search for other papers by L. Goddard in
Current site
Google Scholar
PubMed
Close
,
A. W. Robertson International Research Institute for Climate and Society, The Earth Institute, Columbia University, Palisades, New York

Search for other papers by A. W. Robertson in
Current site
Google Scholar
PubMed
Close
,
Y. Kushnir Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Y. Kushnir in
Current site
Google Scholar
PubMed
Close
, and
W. Baethgen International Research Institute for Climate and Society, The Earth Institute, Columbia University, Palisades, New York

Search for other papers by W. Baethgen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The physical mechanisms and predictability associated with extreme daily rainfall in southeastern South America (SESA) are investigated for the December–February season in a two-part study. Through a k-mean analysis, this first paper identifies a robust set of daily circulation regimes that are used to link the frequency of rainfall extreme events with large-scale potential predictors at subseasonal-to-seasonal scales. This represents a basic set of daily circulation regimes related to the continental and oceanic phases of the South Atlantic convergence zone (SACZ) and wave train patterns superimposed on the Southern Hemisphere polar jet. Some of these recurrent synoptic circulation types are conducive to extreme rainfall events in the region through synoptic control of different mesoscale physical features and, at the same time, are influenced by climate phenomena that could be used as sources of potential predictability. Extremely high rainfall (as measured by the 95th and 99th percentiles) is associated with two of these weather types (WTs), which are characterized by moisture advection intrusions from lower latitudes and the Pacific Ocean; another three WTs, characterized by above-normal moisture advection toward lower latitudes or the Andes, are associated with dry days (days with no rain). The analysis permits the identification of several subseasonal-to-seasonal scale potential predictors that modulate the occurrence of circulation regimes conducive to extreme rainfall events in SESA. It is conjectured that a cross–time scale interaction between the different climate drivers improves the predictive skill of extreme precipitation in the region.

Denotes Open Access content.

Corresponding author address: Á. G. Muñoz, International Research Institute for Climate and Society (IRI), Monell Building, Columbia University, 61 Route 9W, Palisades, NY 10964-1000. E-mail: agmunoz@iri.columbia.edu

Abstract

The physical mechanisms and predictability associated with extreme daily rainfall in southeastern South America (SESA) are investigated for the December–February season in a two-part study. Through a k-mean analysis, this first paper identifies a robust set of daily circulation regimes that are used to link the frequency of rainfall extreme events with large-scale potential predictors at subseasonal-to-seasonal scales. This represents a basic set of daily circulation regimes related to the continental and oceanic phases of the South Atlantic convergence zone (SACZ) and wave train patterns superimposed on the Southern Hemisphere polar jet. Some of these recurrent synoptic circulation types are conducive to extreme rainfall events in the region through synoptic control of different mesoscale physical features and, at the same time, are influenced by climate phenomena that could be used as sources of potential predictability. Extremely high rainfall (as measured by the 95th and 99th percentiles) is associated with two of these weather types (WTs), which are characterized by moisture advection intrusions from lower latitudes and the Pacific Ocean; another three WTs, characterized by above-normal moisture advection toward lower latitudes or the Andes, are associated with dry days (days with no rain). The analysis permits the identification of several subseasonal-to-seasonal scale potential predictors that modulate the occurrence of circulation regimes conducive to extreme rainfall events in SESA. It is conjectured that a cross–time scale interaction between the different climate drivers improves the predictive skill of extreme precipitation in the region.

Denotes Open Access content.

Corresponding author address: Á. G. Muñoz, International Research Institute for Climate and Society (IRI), Monell Building, Columbia University, 61 Route 9W, Palisades, NY 10964-1000. E-mail: agmunoz@iri.columbia.edu
Save
  • Alessandro, A. P., 1996: Situación sinóptica asociada a la sequía del invierno de 1995. Rev. Geofis., 45, 125143.

  • Alessandro, A. P., 2001: Long waves around South America and precipitation in Argentina. Meteor. Appl., 8, 8595, doi:10.1017/S1350482701001074.

    • Search Google Scholar
    • Export Citation
  • Almeira, G. J., and B. Scian, 2006: Some atmospheric and oceanic indices as predictors of seasonal rainfall in the Del Plata Basin of Argentina. J. Hydrol., 329, 350359, doi:10.1016/j.jhydrol.2006.02.027.

    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., and B. J. Hoskins, 1997: Stationary Rossby-wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928, doi:10.1002/qj.49712354007.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2014: Climate information, outlooks, and understanding—Where does the IRI stand? Earth Perspect., 1, 20, doi:10.1186/2194-6434-1-20.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., 2010: Influence of ENSO and the South Atlantic Ocean on climate predictability over southeastern South America. Climate Dyn., 35, 14931508, doi:10.1007/s00382-009-0666-9.

    • Search Google Scholar
    • Export Citation
  • Bettolli, M. L., M. Vargas, and O. C. Penalba, 2009: Soya bean yield variability in the Argentine Pampas in relation to synoptic weather types: Monitoring implications. Meteor. Appl., 16, 501511, doi:10.1002/met.148.

    • Search Google Scholar
    • Export Citation
  • Bettolli, M. L., O. C. Penalba, and W. M. Vargas, 2010: Synoptic weather types in the south of South America and their relationship to daily rainfall in the core crop-producing region in Argentina. Aust. Meteor. Oceanogr. J., 60, 3748.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2002: Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Climate, 15, 23772394, doi:10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., A. E. Silva, C. Jones, B. Liebmann, P. L. Silva Dias, and H. R. Rocha, 2011: Moisture transport and intraseasonal variability in the South America monsoon system. Climate Dyn., 36, 18651880, doi:10.1007/s00382-010-0806-2.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Cazes-Boezio, G., A. W. Robertson, and C. R. Mechoso, 2003: Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. J. Climate, 16, 11591176, doi:10.1175/1520-0442(2003)16<1159:SDOETO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., T. L. Mote, and J. M. Shepherd, 2009: The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Climate, 22, 45904605, doi:10.1175/2009JCLI2858.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., T. M. Rickenbach, D. L. Herdies, and L. M. V. Carvalho, 2003: Variability of South American convective cloud systems and tropospheric circulation during January–March 1998 and 1999. Mon. Wea. Rev., 131, 961973, doi:10.1175/1520-0493(2003)131<0961:VOSACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2010: Interaction between the Atlantic meridional and Niño modes. Geophys. Res. Lett., 37, L18604, doi:10.1029/2010GL044001.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. A. Rutllant, and H. Fuenzalida, 2002: Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Mon. Wea. Rev., 130, 75–88, doi:10.1175/1520-0493(2002)130<0075:CLATSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., A. G. Barnston, and S. J. Mason, 2003: Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull. Amer. Meteor. Soc., 84, 17611781, doi:10.1175/BAMS-84-12-1761.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., W. E. Baethgen, H. Bhojwani, and A. W. Robertson, 2014: The International Research Institute for Climate & Society: Why, what and how. Earth Perspect., 1, 10, doi:10.1186/2194-6434-1-10.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., L. Goddard, and R. Cousin, 2011: Web tool deconstructs variability in twentieth-century climate. Eos, Trans. Amer. Geophys. Union, 92, 397, doi:10.1029/2011EO450001.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and R. G. Tedeschi, 2009: ENSO and extreme rainfall events in South America. J. Climate, 22, 15891609, doi:10.1175/2008JCLI2429.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2002: Active and break phases in the South American monsoon system. J. Climate, 15, 905914, doi:10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1997: Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Wea. Rev., 125, 19972013, doi:10.1175/1520-0493(1997)125<1997:HSASOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 1999: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Labraga, J. C., B. Scian, and O. Frumento, 2002: Anomalies in the atmospheric circulation associated with the rainfall excess or deficit in the Pampa Region in Argentina. J. Geophys. Res., 107, 4666, doi:10.1029/2002JD002113.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, J. Marengo, T. Ambrizzi, and J. D. Glick, 1999: Submonthly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12, 18771891, doi:10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 22612280, doi:10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and O. Baddour, 2008: Statistical modelling. Seasonal Climate: Forecasting and Managing Risk, A. Troccoli et al., Eds., Vol. 82, NATO Science Series: IV: Earth and Environmental Sciences, Springer, 163–201.

  • Mechoso, C. R., and Coauthors, 2001: Climatology and hydrology of La Plata Basin. Accessed 24 Sep 2014. [Available online at http://www.atmos.umd.edu/~berbery/lpb/science_plan.html.]

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minetti, J. L., W. M. Vargas, and A. G. Poblete, 1993: Comportamiento interestacional e interanual del borde oriental del Anticiclón del Pacífico Sur. Geofísica, 38, 7989.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. Nogues-Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21, 12111229, doi:10.1002/joc.685.

    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, and M. N. Ward, 2006: Seasonal predictability and spatial coherence of rainfall characteristics in the tropical setting of Senegal. Mon. Wea. Rev., 134, 32483262, doi:10.1175/MWR3252.1.

    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, M. N. Ward, and P. Camberlin, 2007: Spatial coherence of tropical rainfall at the regional scale. J. Climate, 20, 52445263, doi:10.1175/2007JCLI1623.1.

    • Search Google Scholar
    • Export Citation
  • Muñoz, Á. G., and Coauthors, 2010: An environmental watch system for the Andean countries: El Observatorio Andino. Bull. Amer. Meteor. Soc., 91, 16451652, doi:10.1175/2010BAMS2958.1.

    • Search Google Scholar
    • Export Citation
  • Muñoz, Á. G., and Coauthors, 2012: Risk management at the Latin American Observatory. Risk Management—Current Issues and Challenges, N. Banaitiene, Ed., InTech, 532–556.

  • Muza, M. N., L. M. V. Carvalho, C. Jones, and B. Liebmann, 2009: Intraseasonal and interannual variability of extreme dry and wet events over southeastern South America and the subtropical Atlantic during austral summer. J. Climate, 22, 16821699, doi:10.1175/2008JCLI2257.1.

    • Search Google Scholar
    • Export Citation
  • Nicolini, M., and A. C. Saulo, 2000: ETA characterization of the 1997–1998 warm season Chaco jet cases. Proc. Sixth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Santiago, Chile, Amer. Meteor. Soc., 12C.1. [Available online at https://ams.confex.com/ams/other/techprogram/paper_10722.htm.]

  • Nicolini, M., A. C. Saulo, J. C. Torres, and P. Salio, 2002: Strong South American low-level jet events characterization during warm season and implications for enhanced precipitation. Meteorológica, 27, 5969.

    • Search Google Scholar
    • Export Citation
  • Nnamchi, H. C., J. Li, and R. N. C. Anyadike, 2011: Does a dipole mode really exist in the South Atlantic Ocean? J. Geophys. Res., 116, D15104, doi:10.1029/2010JD015579.

    • Search Google Scholar
    • Export Citation
  • Penalba, O. C., M. L. Bettolli, and P. A. Krieger, 2013: Surface circulation types and daily maximum and minimum temperatures in southern La Plata basin. J. Appl. Meteor. Climatol., 52, 24502459, doi:10.1175/JAMC-D-13-039.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and P. J. Roebber, 2014: Synoptic control of heavy-rain-producing convective training episodes. Mon. Wea. Rev., 142, 24642482, doi:10.1175/MWR-D-13-00263.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. Cifelli, D. J. Boccippio, S. A. Rutledge, and C. Fairall, 2003: Convection and easterly wave structures observed in the eastern Pacific warm pool during EPIC-2001. J. Atmos. Sci., 60, 17541773, doi:10.1175/1520-0469(2003)060<1754:CAEWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Racsko, P., L. Szeidl, and M. Semenov, 1991: A serial approach to local stochastic weather models. Ecol. Modell., 57, 2741, doi:10.1016/0304-3800(91)90053-4.

    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17, 182190, doi:10.1029/WR017i001p00182.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12, 17961813, doi:10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., V. Moron, and Y. Swarinoto, 2009: Seasonal predictability of daily rainfall statistics over Indramayu district, Indonesia. Int. J. Climatol., 29, 14491462, doi:10.1002/joc.1816.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., K. L. Swanson, and J. K. Ghorai, 2008: Synoptic control of mesoscale precipitating systems in the Pacific Northwest. Mon. Wea. Rev., 136, 34653476, doi:10.1175/2008MWR2264.1.

    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and A. C. Saulo, 2002: Chaco low-level jet events characterization during the austral summer season. J. Geophys. Res., 107, 4816, doi:10.1029/2001JD001315.

    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., R. Garreaud, F. A. Norte, and A. C. Saulo, 2006: Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Mon. Wea. Rev., 134, 33173335, doi:10.1175/MWR3247.1.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and Coauthors, 2002: Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon region. J. Geophys. Res., 107, 8072, doi:10.1029/2001JD000335.

    • Search Google Scholar
    • Export Citation
  • Silvestri, G. E., and C. S. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30, 2115, doi:10.1029/2003GL018277.

    • Search Google Scholar
    • Export Citation
  • Sirovich, L., M. Y. Stoeckle, and Y. Zhang, 2009: A scalable method for analysis and display of DNA sequences. PLoS One, 4, e7051, doi:10.1371/journal.pone.0007051.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2011: ECMWF Seasonal Forecast System 3 and its prediction of sea surface temperature. Climate Dyn., 37, 455471, doi:10.1007/s00382-010-0947-3.

    • Search Google Scholar
    • Export Citation
  • Trzaska, S., A. W. Robertson, J. D. Farrara, and C. R. Mechoso, 2007: South Atlantic variability arising from air–sea coupling: Local mechanisms and tropical–subtropical interactions. J. Climate, 20, 33453365, doi:10.1175/JCLI4114.1.

    • Search Google Scholar
    • Export Citation
  • Van der Wiel, K., A. J. Matthews, D. P. Stevens, and M. M. Joshi, 2015: A dynamical framework for the origin of the diagonal South Pacific and South Atlantic convergence zones. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2508, in press.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, doi:10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, doi:10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Viale, M., and M. N. Nuñez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, doi:10.1175/2010JHM1284.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 2013: Sub-seasonal to seasonal prediction: Research implementation plan. WMO, 71 pp. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/new/S2S_project_main_page.html.]

  • Zhou, Z., and J. A. Carton, 1998: Latent heat flux and interannual variability of the coupled atmosphere–ocean system. J. Atmos. Sci., 55, 494501, doi:10.1175/1520-0469(1998)055<0494:LHFAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 453 124 11
PDF Downloads 369 86 12