Changes in Independency between Two Types of El Niño Events under a Greenhouse Warming Scenario in CMIP5 Models

Yoo-Geun Ham Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju, South Korea

Search for other papers by Yoo-Geun Ham in
Current site
Google Scholar
PubMed
Close
,
Yerim Jeong Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju, South Korea

Search for other papers by Yerim Jeong in
Current site
Google Scholar
PubMed
Close
, and
Jong-Seong Kug School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea

Search for other papers by Jong-Seong Kug in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.

Corresponding author address: Prof. Jong-Seong Kug, School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 cheongam-Ro Nam-Gu, Pohang 790-784, South Korea. E-mail: jskug1@gmail.com

Abstract

This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.

Corresponding author address: Prof. Jong-Seong Kug, School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 cheongam-Ro Nam-Gu, Pohang 790-784, South Korea. E-mail: jskug1@gmail.com
Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., 2011: Atmospheric responses of Gill-type and Lindzen–Nigam models to global warming. J. Climate, 24, 61656173, doi:10.1175/2011JCLI3971.1.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., J.-S. Kug, Y.-G. Ham, and I.-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21, 321, doi:10.1175/2007JCLI1500.1.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., J.-W. Kim, S.-H. Im, B.-M. Kim, and J.-H. Park, 2012: Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Climate Dyn., 39, 13731383, doi:10.1007/s00382-011-1129-7.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., and T. Yamagata, 2009: Climate change: The El Niño with a difference. Nature, 461, 481484, doi:10.1038/461481a.

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111–116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, doi:10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, doi:10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24, 89104, doi:10.1007/s00382-004-0478-x.

  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Nino? Climate Dyn., 39, 383398, doi:10.1007/s00382-011-1157-3.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2014: Effects of Pacific Intertropical Convergence Zone precipitation bias on ENSO phase transition. Environ. Res. Lett., 9, 064008, doi:10.1088/1748-9326/9/6/064008.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, and M.-J. Lim, 2012: Rectification feedback of high-frequency atmospheric variability into low-frequency zonal flows in the tropical Pacific. J. Climate, 25, 50885101, doi:10.1175/JCLI-D-11-00303.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, doi:10.1029/1999GL002297.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Johnson, N. C., 2014: Atmospheric science: A boost in big El Niño. Nat. Climate Change, 4, 9091, doi:10.1038/nclimate2108.

  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, doi:10.1029/2001JD000393.

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, doi:10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, I.-S. Kang, F.-F. Jin, and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31, 213226, doi:10.1007/s00382-007-0348-4.

    • Search Google Scholar
    • Export Citation
  • Kim, D., Y.-S. Jang, D.-H. Kim, Y.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2011: El Niño–Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J. Geophys. Res., 116, D22112, doi:10.1029/2011JD016526.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Nina? Geophys. Res. Lett., 38, L16704, doi:10.1029/2011GL048237.

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., S.-I. An, Y.-G. Ham, and I.-S. Kang, 2010a: Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulation. Theor. Appl. Climatol., 100, 275282, doi:10.1007/s00704-009-0183-0.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010b: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239, doi:10.1175/2009JCLI3293.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., K. P. Sooraj, F.-F. Jin, Y.-G. Ham, and D. Kim, 2011: A possible mechanism for El Niño–like warming in response to the future greenhouse warming. J. Climatol., 31, 15671572, doi:10.1002/joc.2163.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, doi:10.1088/1748-9326/7/3/034002.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. Harrison, 2005a: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. Harrison, 2005b: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, D. J. Erickson, B. P. Briegleb, and P. J. Jaumann, 1996: Climate change from increased CO2 and direct and indirect effects of sulfate aerosols. Geophys. Res. Lett., 23, 37553758, doi:10.1029/96GL03478.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac.J. Atmos. Sci., 51, 103121, doi:10.1007/s13143-015-0066-5.

    • Search Google Scholar
    • Export Citation
  • Newman, M., S. I. Shin, and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, doi:10.1029/2011GL047658.

    • Search Google Scholar
    • Export Citation
  • Philip, S., and G. J. van Oldenborgh, 2006: Shifts in ENSO coupling processes under global warming. Geophys. Res. Lett., 33, L11704, doi:10.1029/2006GL026196.

    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, doi:10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10, 521534, doi:10.1175/1520-0442(1997)010<0521:ODTAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seiki, A., Y. N. Takayabu, T. Yasuda, N. Sato, C. Takahashi, K. Yoneyama, and R. Shirooka, 2011: Westerly wind bursts and their relationship with ENSO in CMIP3 models. J. Geophys. Res., 116, D03303, doi:10.1029/2010JD015039.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 2014: The role of ENSO in global ocean temperature changes during 1955–2011 simulated with a 1D climate model. Asia-Pac.J. Atmos. Sci., 50, 229237, doi:10.1007/s13143-014-0011-z.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and Z. Liu, 1996: Dynamic ocean–atmosphere coupling: A thermostat for the tropics. Science, 272, 1148–1149, doi:10.1126/science.272.5265.1148.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. Sen Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27, 28612885, doi:10.1175/JCLI-D-13-00437.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci. Discuss., 2, 267298, doi:10.5194/osd-2-267-2005.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, doi:10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and A. T. Wittenberg, 2012: A method for disentangling El Niño–mean state interaction. Geophys. Res. Lett., 39, L14702, doi:10.1029/2012GL052013.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, L20703, doi:10.1029/2012GL053305.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., Y. Kamae, and M. Kimoto, 2014: Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate. Geophys. Res. Lett., 41, 32273232, doi:10.1002/2014GL059692.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., B. P. Kirtman, J. S. Kug, W. Park, and M. Latif, 2011: Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys. Res. Lett., 38, L02704, doi:10.1029/2010GL045886.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, doi:10.1007/s13143-014-0028-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 81 11
PDF Downloads 119 51 6