Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions

Hannah Kleppin Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Hannah Kleppin in
Current site
Google Scholar
PubMed
Close
,
Markus Jochum Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Markus Jochum in
Current site
Google Scholar
PubMed
Close
,
Bette Otto-Bliesner National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Bette Otto-Bliesner in
Current site
Google Scholar
PubMed
Close
,
Christine A. Shields National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Christine A. Shields in
Current site
Google Scholar
PubMed
Close
, and
Stephen Yeager National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stephen Yeager in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An unforced simulation of the Community Climate System Model, version 4 (CCSM4), is found to have Greenland warming and cooling events that resemble Dansgaard–Oeschger cycles in pattern and magnitude. With the caveat that only three transitions were available to be analyzed, it is found that the transitions are triggered by stochastic atmospheric forcing. The atmospheric anomalies change the strength of the subpolar gyre, leading to a change in Labrador Sea sea ice concentration and meridional heat transport. The changed climate state is maintained over centuries through the feedback between sea ice and sea level pressure in the North Atlantic. Indications that the initial atmospheric pressure anomalies are preceded by precipitation anomalies in the western Pacific warm pool are discussed. The full evolution of the anomalous climate state depends crucially on the climatic background state.

Corresponding author address: Hannah Kleppin, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. E-mail: kleppin@nbi.ku.dk

Abstract

An unforced simulation of the Community Climate System Model, version 4 (CCSM4), is found to have Greenland warming and cooling events that resemble Dansgaard–Oeschger cycles in pattern and magnitude. With the caveat that only three transitions were available to be analyzed, it is found that the transitions are triggered by stochastic atmospheric forcing. The atmospheric anomalies change the strength of the subpolar gyre, leading to a change in Labrador Sea sea ice concentration and meridional heat transport. The changed climate state is maintained over centuries through the feedback between sea ice and sea level pressure in the North Atlantic. Indications that the initial atmospheric pressure anomalies are preceded by precipitation anomalies in the western Pacific warm pool are discussed. The full evolution of the anomalous climate state depends crucially on the climatic background state.

Corresponding author address: Hannah Kleppin, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. E-mail: kleppin@nbi.ku.dk
Save
  • Andersen, K. K., and Coauthors, 2006: The Greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quat. Sci. Rev., 25, 32463257, doi:10.1016/j.quascirev.2006.08.002.

    • Search Google Scholar
    • Export Citation
  • Antonov, J., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Arz, H. W., F. Lamy, A. Ganopolski, N. Nowaczyk, and J. Pätzold, 2007: Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quat. Sci. Rev., 26, 312321, doi:10.1016/j.quascirev.2006.07.016.

    • Search Google Scholar
    • Export Citation
  • Barbante, C., and Coauthors, 2006: One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195198, doi:10.1038/nature05301.

    • Search Google Scholar
    • Export Citation
  • Bethke, I., C. Li, and K. H. Nisancioglu, 2012: Can we use ice sheet reconstructions to constrain meltwater for deglacial simulations? Paleoceanography, 27, PA2205, doi:10.1029/2011PA002258.

    • Search Google Scholar
    • Export Citation
  • Böhm, E., and Coauthors, 2015: Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 517, 7376, doi:10.1038/nature14059.

    • Search Google Scholar
    • Export Citation
  • Bond, G., and Coauthors, 1997: A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 12571266, doi:10.1126/science.278.5341.1257.

    • Search Google Scholar
    • Export Citation
  • Born, A., and T. F. Stocker, 2014: Two stable equilibria of the Atlantic subpolar gyre. J. Phys. Oceanogr., 44, 246264, doi:10.1175/JPO-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Born, A., T. F. Stocker, C. C. Raible, and A. Levermann, 2013a: Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models? Climate Dyn., 40, 29933007, doi:10.1007/s00382-012-1525-7.

    • Search Google Scholar
    • Export Citation
  • Born, A., T. F. Stocker, and A. B. Sandø, 2013b: Coupling of eastern and western subpolar North Atlantic: Salt transport in the Irminger Current. Ocean Sci. Discuss., 10, 555579, doi:10.5194/osd-10-555-2013.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., G. Bond, M. Klas, G. Bonani, and W. Wolfli, 1990: A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5, 469477, doi:10.1029/PA005i004p00469.

    • Search Google Scholar
    • Export Citation
  • Cappelen, J., 2013: Greenland-DMI historical climate data collection 1873–2012—With Danish abstracts. DMI Tech. Rep. 13-04, 75 pp. [Available online at http://www.dmi.dk/laer-om/generelt/dmi-publikationer/2013/.]

  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, doi:10.1016/j.ocemod.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220, doi:10.1038/364218a0.

    • Search Google Scholar
    • Export Citation
  • Deser, C., G. Magnusdottir, R. Saravanan, and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, doi:10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2007: Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695705, doi:10.1111/j.1600-0870.2007.00267.x.

    • Search Google Scholar
    • Export Citation
  • Dokken, T. M., K. H. Nisancioglu, C. Li, D. S. Battisti, and C. Kissel, 2013: Dansgaard–Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography, 28, 491502, doi:10.1002/palo.20042.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., E. Gleeson, H. A. Dijkstra, and V. Livina, 2013: Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation. Proc. Natl. Acad. Sci. USA, 110, 19 71319 718, doi:10.1073/pnas.1304912110.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676691, doi:10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280, doi:10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and G. K. Vallis, 2011: Mechanisms of interdecadal climate variability and the role of ocean–atmosphere coupling. Climate Dyn., 36, 289308, doi:10.1007/s00382-009-0674-9.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., H. Renssen, F. M. Selten, R. J. Haarsma, and J. D. Opsteegh, 2002: Potential causes of abrupt climate events: A numerical study with a three-dimensional climate model. Geophys. Res. Lett., 29, 1860, doi:10.1029/2002GL014993.

  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334, 655659, doi:10.1126/science.1205683.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and R. J. Stouffer, 2001: An abrupt climate event in a coupled ocean–atmosphere simulation without external forcing. Nature, 409, 171175, doi:10.1038/35051544.

    • Search Google Scholar
    • Export Citation
  • Huber, C., and Coauthors, 2006: Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett., 243, 504519, doi:10.1016/j.epsl.2006.01.002.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., and M. Vellinga, 2013: Multidecadal to centennial variability of the AMOC: HadCM3 and a perturbed physics ensemble. J. Climate, 26, 23902407, doi:10.1175/JCLI-D-11-00601.1.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., A. Jahn, S. Peacock, D. A. Bailey, J. T. Fasullo, J. Kay, S. Levis, and B. Otto-Bliesner, 2012: True to Milankovitch: Glacial inception in the new Community Climate System Model. J. Climate, 25, 22262239, doi:10.1175/JCLI-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Johns, W., T. Shay, J. Bane, and D. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100, 817838, doi:10.1029/94JC02497.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2013: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: A multi-model study. Climate Past, 9, 935953, doi:10.5194/cp-9-935-2013.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., O. E. Romero, G. Lohmann, B. Donner, T. Laepple, E. Haam, and J. S. S. Damste, 2012: Pronounced subsurface cooling of North Atlantic waters off northwest Africa during Dansgaard–Oeschger interstadials. Earth Planet. Sci. Lett., 339, 95102, doi:10.1016/j.epsl.2012.05.018.

    • Search Google Scholar
    • Export Citation
  • Landais, A., and Coauthors, 2004: A continuous record of temperature evolution over a sequence of Dansgaard–Oeschger events during Marine Isotopic Stage 4 (76 to 62 kyr BP). Geophys. Res. Lett., 31, L22211, doi:10.1029/2004GL021193.

    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, doi:10.1175/2007JCLI2166.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., D. S. Battisti, D. P. Schrag, and E. Tziperman, 2005: Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett., 32, L19702, doi:10.1029/2005GL023492.

    • Search Google Scholar
    • Export Citation
  • Li, C., D. S. Battisti, and C. M. Bitz, 2010: Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Climate, 23, 54575475, doi:10.1175/2010JCLI3409.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Z. Lu, X. Wen, B. Otto-Bliesner, A. Timmermann, and K. Cobb, 2014: Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature, 515, 550553, doi:10.1038/nature13963.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R., A. Mishonov, J. Antonov, T. Boyer, H. Garcia, O. Baranova, M. Zweng, and D. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Manabe, S., and R. J. Stouffer, 1999: Are two modes of thermohaline circulation stable? Tellus, 51A, 400411, doi:10.1034/j.1600-0870.1999.t01-3-00005.x.

    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2015: Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model. Deep-Sea Res. II, 113, 3948, doi:10.1016/j.dsr2.2014.01.018.

    • Search Google Scholar
    • Export Citation
  • Merkel, U., M. Prange, and M. Schulz, 2010: ENSO variability and teleconnections during glacial climates. Quat. Sci. Rev., 29, 86100, doi:10.1016/j.quascirev.2009.11.006.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., A. Ganopolski, and A. Levermann, 2007: Atlantic subsurface temperatures: Response to a shutdown of the overturning circulation and consequences for its recovery. J. Climate, 20, 48844898, doi:10.1175/JCLI4280.1.

    • Search Google Scholar
    • Export Citation
  • Moy, C. M., G. O. Seltzer, D. T. Rodbell, and D. M. Anderson, 2002: Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162165, doi:10.1038/nature01194.

    • Search Google Scholar
    • Export Citation
  • O’Brien, S. R., P. A. Mayewski, L. D. Meeker, D. A. Meese, M. S. Twickler, and S. I. Whitlow, 1995: Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270, 19621964, doi:10.1126/science.270.5244.1962.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pausata, F., C. Li, J. Wettstein, M. Kageyama, and K. Nisancioglu, 2011: The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Climate Past, 7, 10891101, doi:10.5194/cp-7-1089-2011.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp.

  • Peltier, W. R., and G. Vettoretti, 2014: Dansgaard–Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett., 41, 73067313, doi:10.1002/2014GL061413.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, doi:10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214, doi:10.1038/nature01090.

  • Rasmussen, T. L., and E. Thomsen, 2004: The role of the North Atlantic drift in the millennial timescale glacial climate fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol., 210, 101116, doi:10.1016/j.palaeo.2004.04.005.

    • Search Google Scholar
    • Export Citation
  • Rohling, E., and Coauthors, 2008: New constraints on the timing of sea level fluctuations during early to middle marine isotope stage 3. Paleoceanography, 23, PA3219, doi:10.1029/2008PA001617.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13, 42684286, doi:10.1175/1520-0442(2000)013<4268:COPAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., J. Green, and S. Wilmes, 2015: Glacial ocean overturning intensified by tidal mixing in a global circulation model. Geophys. Res. Lett., 42, 40144022, doi:10.1002/2015GL063561.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and D. S. Battisti, 2007: Challenges to our understanding of the general circulation: Abrupt climate change. Global Circulation of the Atmosphere, Princeton University Press, 331–371.

  • Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, doi:10.1175/JCLI-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Siddall, M., E. J. Rohling, A. Almogi-Labin, C. Hemleben, D. Meischner, I. Schmelzer, and D. Smeed, 2003: Sea-level fluctuations during the last glacial cycle. Nature, 423, 853858, doi:10.1038/nature01690.

    • Search Google Scholar
    • Export Citation
  • Sidorenko, D., and Coauthors, 2015: Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part I: Model formulation and mean climate. Climate Dyn., 44, 757780, doi:10.1007/s00382-014-2290-6.

    • Search Google Scholar
    • Export Citation
  • Steffensen, J. P., and Coauthors, 2008: High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680684, doi:10.1126/science.1157707.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and S. J. Johnsen, 2003: A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087, doi:10.1029/2003PA000920.

    • Search Google Scholar
    • Export Citation
  • Stott, L., C. Poulsen, S. Lund, and R. Thunell, 2002: Super ENSO and global climate oscillations at millennial time scales. Science, 297, 222226, doi:10.1126/science.1071627.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. J. Lorenz, S.-I. An, A. Clement, and S.-P. Xie, 2007: The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Climate, 20, 41474159, doi:10.1175/JCLI4240.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, doi:10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Tudhope, A. W., and Coauthors, 2001: Variability in the El Niño–Southern Oscillation through a glacial–interglacial cycle. Science, 291, 15111517, doi:10.1126/science.1057969.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Abrupt climate change: An alternative view. Quat. Res., 65, 191203, doi:10.1016/j.yqres.2005.10.006.

  • Yeager, S., and G. Danabasoglu, 2014: The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Climate, 27, 32223247, doi:10.1175/JCLI-D-13-00125.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Lohmann, G. Knorr, and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, doi:10.1038/nature13592.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 769 290 23
PDF Downloads 380 127 4