Paleoclimate Sampling as a Sensor Placement Problem

Maud Comboul University of Southern California, Los Angeles, California

Search for other papers by Maud Comboul in
Current site
Google Scholar
PubMed
Close
,
Julien Emile-Geay University of Southern California, Los Angeles, California

Search for other papers by Julien Emile-Geay in
Current site
Google Scholar
PubMed
Close
,
Gregory J. Hakim Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
, and
Michael N. Evans Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Michael N. Evans in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study formulates the design of optimal observing networks for past surface climate conditions as the solution to a data assimilation problem, given a realistic proxy system model (PSM), paleoclimate observational uncertainties, and a network of current and proposed observing sites. The method is illustrated with the design of optimal networks of coral δ18O records, chosen among candidate sites, and used to jointly infer sea surface temperature (SST) and sea surface salinity (SSS) fields from the Community Climate System Model, version 4, last millennium simulation over the 1850–2005 period. It is shown that an existing paleo-observing network accounts for approximately 20% of the SST variance, and that adding 25 to 100 optimal pseudocoral sites would boost this fraction to 35%–52%. Characterizing the SST variance alone, or jointly with the SSS, leads to similar optimal networks, which justifies using coral δ18O records for SST reconstructions. In contrast, the network design for reconstructing SSS alone is fundamentally different, emphasizing the hydroclimatic centers of action of El Niño–Southern Oscillation. In all cases, network design depends strongly on the amplitude of the observational error, so replicates may be more beneficial than the exploration of new sites; these replicates tend to be chosen where proxies are already informative of the large-scale climate field(s). Finally, extensions to other types of paleoclimatic observations are discussed, and a path to operationalization is outlined.

Publisher’s Note: This article was revised on 5 October 2015 to include additional text in the Acknowledgements section.

Corresponding author address: Julien Emile-Geay, Dept. of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, CA 90089. E-mail: julieneg@usc.edu

Abstract

This study formulates the design of optimal observing networks for past surface climate conditions as the solution to a data assimilation problem, given a realistic proxy system model (PSM), paleoclimate observational uncertainties, and a network of current and proposed observing sites. The method is illustrated with the design of optimal networks of coral δ18O records, chosen among candidate sites, and used to jointly infer sea surface temperature (SST) and sea surface salinity (SSS) fields from the Community Climate System Model, version 4, last millennium simulation over the 1850–2005 period. It is shown that an existing paleo-observing network accounts for approximately 20% of the SST variance, and that adding 25 to 100 optimal pseudocoral sites would boost this fraction to 35%–52%. Characterizing the SST variance alone, or jointly with the SSS, leads to similar optimal networks, which justifies using coral δ18O records for SST reconstructions. In contrast, the network design for reconstructing SSS alone is fundamentally different, emphasizing the hydroclimatic centers of action of El Niño–Southern Oscillation. In all cases, network design depends strongly on the amplitude of the observational error, so replicates may be more beneficial than the exploration of new sites; these replicates tend to be chosen where proxies are already informative of the large-scale climate field(s). Finally, extensions to other types of paleoclimatic observations are discussed, and a path to operationalization is outlined.

Publisher’s Note: This article was revised on 5 October 2015 to include additional text in the Acknowledgements section.

Corresponding author address: Julien Emile-Geay, Dept. of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, CA 90089. E-mail: julieneg@usc.edu
Save
  • Abram, N. J., M. K. Gagan, J. E. Cole, W. S. Hantoro, and M. Mudelsee, 2008: Recent intensification of tropical climate variability in the Indian Ocean. Nat. Geosci., 1, 849853, doi:10.1038/ngeo357.

    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, doi:10.1175/2007MWR1904.1.

    • Search Google Scholar
    • Export Citation
  • Anstreicher, K. M., M. Fampa, J. Lee, and J. Williams, 2001: Maximum-entropy remote sampling. Discrete Appl. Math., 108, 211226, doi:10.1016/S0166-218X(00)00217-1.

    • Search Google Scholar
    • Export Citation
  • Asami, R., T. Yamada, Y. Iryu, T. M. Quinn, C. P. Meyer, and G. Paulay, 2005: Interannual and decadal variability of the western Pacific sea surface condition for the years 1787–2000: Reconstruction based on stable isotope record from a Guam coral. J. Geophys. Res., 110, C05018, doi:10.1029/2004JC002555.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. E. Cole, M. N. Evans, H. Barnett, N. J. Abram, A. W. Tudhope, and B. K. Linsley, 2009: Intensified decadal variability in tropical climate during the late 19th century. Geophys. Res. Lett., 36, L08602, doi:10.1029/2008GL036924.

    • Search Google Scholar
    • Export Citation
  • Bagnato, S., B. K. Linsley, S. S. Howe, G. M. Wellington, and J. Salinger, 2004: Evaluating the use of the massive coral Diploastrea heliopora for paleoclimate reconstruction. Paleoceanography, 19, PA1032, doi:10.1029/2003PA000935.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Berry, J., L. Fleischer, W. Hart, C. Phillips, and J. Watson, 2005: Sensor placement in municipal water networks. J. Water Resour. Plann. Manage., 131, 237243, doi:10.1061/(ASCE)0733-9496(2005)131:3(237).

    • Search Google Scholar
    • Export Citation
  • Boiseau, M., A. Juillet-Leclerc, P. Yiou, B. Salvat, P. Isdale, and M. Guillaume, 1998: Atmospheric and oceanic evidences of El Niño–Southern Oscillation events in the south central Pacific Ocean from coral stable isotopic records over the last 137 years. Paleoceanography, 13, 671685, doi:10.1029/98PA02502.

    • Search Google Scholar
    • Export Citation
  • Bourlès, B., and Coauthors, 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111125, doi:10.1175/2008BAMS2462.1.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., 1996: Are there optimum sites for global paleotemperature reconstruction? Climatic Variations and Forcing Mechanisms of the Last 2000 Years, P. D. Jones, R. S. Bradley, and J. Jouzel, Eds., NATO ASI Series, Vol. 41, Springer, 603–624.

  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, doi:10.1002/jgrc.20335.

  • Castello, C. C., J. Fan, A. Davari, and R.-X. Chen, 2010: Optimal sensor placement strategy for environmental monitoring using wireless sensor networks. Proc. 42nd Southeastern Symp. on System Theory (SSST), Tyler, TX, IEEE, 275–279, doi:10.1109/SSST.2010.5442825.

  • Chakraborty, S., and R. Ramesh, 1998: Stable isotope variations in a coral (Favia speciosa) from the Gulf of Kutch during 1948–1989 AD: Environmental implications. Earth Planet. Sci., 107, 331341, doi:10.1007/BF02841599.

    • Search Google Scholar
    • Export Citation
  • Charles, C. D., D. E. Hunter, and R. G. Fairbanks, 1997: Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science, 277, 925928, doi:10.1126/science.277.5328.925.

    • Search Google Scholar
    • Export Citation
  • Charles, C. D., K. Cobb, M. D. Moore, and R. G. Fairbanks, 2003: Monsoon–tropical ocean interaction in a network of coral records spanning the 20th century. Mar. Geol., 201, 207222, doi:10.1016/S0025-3227(03)00217-2.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271276, doi:10.1038/nature01779.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., J. E. Cole, J. M. Lough, and A. W. Tudhope, 2008: Annually-banded corals as climate proxies. Proc. CLIVAR-PAGES Workshop on Representing and Reducing Uncertainties in High-Resolution Climate Proxy Data, Trieste, Italy, CLIVAR. [Available online at http://www.ncdc.noaa.gov/paleo/reports/trieste2008/corals.pdf.]

  • Cole, J. E., R. G. Fairbanks, and G. T. Shen, 1993: Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral. Science, 260, 17901793, doi:10.1126/science.260.5115.1790.

    • Search Google Scholar
    • Export Citation
  • Comboul, M., and R. Ghanem, 2013: Value of information in the design of resilient water distribution sensor networks. J. Water Res. Plann. Manage., 139, 449455, doi:10.1061/(ASCE)WR.1943-5452.0000259.

    • Search Google Scholar
    • Export Citation
  • Comboul, M., J. Emile-Geay, M. N. Evans, N. Mirnateghi, K. M. Cobb, and D. M. Thompson, 2014: A probabilistic model of chronological errors in layer-counted climate proxies: Applications to annually banded coral archives. Climate Past, 10, 825841, doi:10.5194/cp-10-825-2014.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. R. Briffa, and P. D. Jones, 1994: Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol., 14, 379402, doi:10.1002/joc.3370140404.

    • Search Google Scholar
    • Export Citation
  • Das, A., and D. Kempe, 2008: Algorithms for subset selection in linear regression. Proc. 40th Annual ACM Symp. on Theory of Computing (STOC ’08), Victoria, BC, Canada, ACM, 45–54, doi:10.1145/1374376.1374384.

  • Das, A., and D. Kempe, 2011: Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. Proc. Int. Conf. on Machine Learning (ICML), Bellevue, WA, International Machine Learning Society, 1057–1064.

  • Dee, S. G., J. Emile-Geay, M. N. Evans, A. A. Allam, E. J. Steig, and D. M. Thompson, 2015: PRYSM: An open-source framework for PRoxY System Modeling. v1.0: Oxygen-isotope systems. J. Adv. Model. Earth Syst., doi:10.1002/2015MS000447, in press.

    • Search Google Scholar
    • Export Citation
  • DeLong, K. L., T. M. Quinn, C.-C. Shen, and K. Lin, 2010: A snapshot of climate variability at Tahiti at 9.5 ka using a fossil coral from IODP Expedition 310. Geochem. Geophys. Geosyst., 11, Q06005, doi:10.1029/2009GC002758.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, doi:10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and J. A. Eshleman, 2013: Toward a semantic web of paleoclimatology. Geochem. Geophys. Geosyst., 14, 457469, doi:10.1002/ggge.20067.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., K. Cobb, M. Mann, and A. T. Wittenberg, 2013a: Estimating central equatorial Pacific SST variability over the past millennium. Part I: Methodology and validation. J. Climate, 26, 23022328, doi:10.1175/JCLI-D-11-00510.1.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., K. Cobb, M. Mann, and A. T. Wittenberg, 2013b: Estimating central equatorial Pacific SST variability over the past millennium. Part II: Reconstructions and implications. J. Climate, 26, 23292352, doi:10.1175/JCLI-D-11-00511.1.

    • Search Google Scholar
    • Export Citation
  • Evans, M. N., R. Fairbanks, and J. Rubenstone, 1998a: A proxy index of ENSO teleconnections. Nature, 394, 732733, doi:10.1038/29424.

  • Evans, M. N., A. Kaplan, and M. A. Cane, 1998b: Optimal sites for coral-based reconstruction of global sea surface temperature. Paleoceanography, 13, 502516, doi:10.1029/98PA02132.

    • Search Google Scholar
    • Export Citation
  • Evans, M. N., A. Kaplan, and M. A. Cane, 2000: Intercomparison of coral oxygen isotope data and historical sea surface temperature (SST): Potential for coral-based SST field reconstructions. Paleoceanography, 15, 551563, doi:10.1029/2000PA000498.

    • Search Google Scholar
    • Export Citation
  • Evans, M. N., S. E. Tolwinski-Ward, D. M. Thompson, and K. J. Anchukaitis, 2013: Applications of proxy system modeling in high-resolution paleoclimatology. Quat. Sci. Rev., 76, 1628, doi:10.1016/j.quascirev.2013.05.024.

    • Search Google Scholar
    • Export Citation
  • Felis, T., J. Pätzold, Y. Loya, M. Fine, A. H. Nawar, and G. Wefer, 2000: A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanography, 15, 679694, doi:10.1029/1999PA000477.

    • Search Google Scholar
    • Export Citation
  • Ferreira, B. P., M. B. S. F. Costa, M. S. Coxey, A. L. B. Gaspar, D. Veleda, and M. Araujo, 2013: The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs, 32, 441454, doi:10.1007/s00338-012-0992-y.

    • Search Google Scholar
    • Export Citation
  • Gagan, M. K., L. K. Ayliffe, J. W. Beck, J. E. Cole, E. R. M. Druffel, R. B. Dunbar, and D. P. Schrag, 2000: New views of tropical paleoclimates from corals. Quat. Sci. Rev., 19, 4564, doi:10.1016/S0277-3791(99)00054-2.

    • Search Google Scholar
    • Export Citation
  • Gandin, L., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translation, 242 pp. [Translated from Russian; originally published by Gidrometeorologicheskoye Izdatel’stvo in 1963.]

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Goodkin, N. F., K. A. Hughen, W. B. Curry, S. C. Doney, and D. R. Ostermann, 2008: Sea surface temperature and salinity variability at Bermuda during the end of the Little Ice Age. Paleoceanography, 23, PA3203, doi:10.1029/2007PA001532.

    • Search Google Scholar
    • Export Citation
  • Guilderson, T. P., and D. P. Schrag, 1999: Reliability of coral isotope records from the western Pacific warm pool: A comparison using age-optimized records. Paleoceanography, 14, 457464, doi:10.1029/1999PA900024.

    • Search Google Scholar
    • Export Citation
  • Haase-Schramm, A., F. Böhm, A. Eisenhauer, W.-C. Dullo, M. M. Joachimski, B. Hansen, and J. Reitner, 2003: Sr/Ca ratios and oxygen isotopes from sclerosponges: Temperature history of the Caribbean mixed layer and thermocline during the Little Ice Age. Paleoceanography, 18, 1073, doi:10.1029/2002PA000830.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and R. D. Torn, 2008: Ensemble synoptic analysis. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, L. F. Bosard and H. B. Bluestein, Eds., Amer. Meteor. Soc., 147–161.

  • Hart, W. E., and R. Murray, 2010: Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. J. Water Resour. Plann. Manage., 136, 611619, doi:10.1061/(ASCE)WR.1943-5452.0000081.

    • Search Google Scholar
    • Export Citation
  • Juillet-Leclerc, A., and G. A. Schmidt, 2001: A calibration of the oxygen isotope paleothermometer of coral aragonite from porites. Geophys. Res. Lett., 28, 41354138, doi:10.1029/2000GL012538.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., Y. Kushnir, M. A. Cane, and M. B. Blumenthal, 1997: Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J. Geophys. Res., 102 (C13), 27 83527 860, doi:10.1029/97JC01734.

    • Search Google Scholar
    • Export Citation
  • Kilbourne, K. H., T. M. Quinn, F. W. Taylor, T. Delcroix, and Y. Gouriou, 2004: El Niño–Southern Oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites coral from Espiritu Santo, Vanuatu. Paleoceanography, 19, PA4002, doi:10.1029/2004PA001033.

    • Search Google Scholar
    • Export Citation
  • Krause, A., J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos, 2008a: Efficient sensor placement optimization for securing large water distribution networks. J. Water Resour. Plann. Manage., 134, 516526, doi:10.1061/(ASCE)0733-9496(2008)134:6(516).

    • Search Google Scholar
    • Export Citation
  • Krause, A., A. Singh, and C. Guestrin, 2008b: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res., 9, 235284.

    • Search Google Scholar
    • Export Citation
  • Kuhnert, H., J. Pätzold, B. Hatcher, K. H. Wyrwoll, A. Eisenhauer, L. B. Collins, Z. R. Zhu, and G. Wefer, 1999: A 200-year coral stable oxygen isotope record from a high-latitude reef off Western Australia. Coral Reefs, 18, 112, doi:10.1007/s003380050147.

    • Search Google Scholar
    • Export Citation
  • Kuhnert, H., J. Pätzold, K.-H. Wyrwoll, and G. Wefer, 2000: Monitoring climate variability over the past 116 years in coral oxygen isotopes from Ningaloo Reef, Western Australia. Int. J. Earth Sci., 88, 725732, doi:10.1007/s005310050300.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., B. L. Otto-Bliesner, E. R. Wahl, A. Conley, P. J. Lawrence, N. Rosenbloom, and H. Teng, 2013: Last millennium climate and its variability in CCSM4. J. Climate, 26, 10851111, doi:10.1175/JCLI-D-11-00326.1.

    • Search Google Scholar
    • Export Citation
  • LeGrande, A., and G. Schmidt, 2006: Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett., 33, L12604, doi:10.1029/2006GL026011.

    • Search Google Scholar
    • Export Citation
  • Levy, O., M. Rosenfeld, R. Yam, and A. Shemesh, 2006: Heterogeneity of coral skeletons isotopic compositions during the 1998 bleaching event. Limnol. Oceanogr., 51, 11421148, doi:10.4319/lo.2006.51.2.1142.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., R. B. Dunbar, G. M. Wellington, and D. A. Mucciarone, 1994: A coral-based reconstruction of intertropical convergence zone variability over Central America since 1707. J. Geophys. Res., 99, 99779994, doi:10.1029/94JC00360.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., L. Ren, R. B. Dunbar, and S. S. Howe, 2000: El Niño Southern Oscillation (ENSO) and decadal-scale climate variability at 10°N in the eastern Pacific from 1893 to 1994: A coral-based reconstruction from Clipperton Atoll. Paleoceanography, 15, 322335, doi:10.1029/1999PA000428.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., G. M. Wellington, D. P. Schrag, L. Ren, J. Salinger, and A. W. Tudhope, 2004: Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years. Climate Dyn., 22, 111, doi:10.1007/s00382-003-0364-y.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., A. Kaplan, Y. Gouriou, J. Salinger, P. B. deMenocal, G. M. Wellington, and S. S. Howe, 2006: Tracking the extent of the South Pacific convergence zone since the early 1600s. Geochem. Geophys. Geosyst., 7, Q05003, doi:10.1029/2005GC001115.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., P. Zhang, A. Kaplan, S. S. Howe, and G. M. Wellington, 2008: Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific convergence zone region since 1650 A.D. Paleoceanography, 23, PA2219, doi:10.1029/2007PA001539.

    • Search Google Scholar
    • Export Citation
  • Lough, J. M., 2004: A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 115143, doi:10.1016/S0031-0182(03)00727-2.

    • Search Google Scholar
    • Export Citation
  • Lough, J. M., 2010: Climate records from corals. Wiley Interdiscip. Rev.: Climate Change, 1, 318331, doi:10.1002/wcc.39.

  • Mauger, G. S., K. A. Bumbaco, G. J. Hakim, and P. W. Mote, 2013: Optimal design of a climatological network: Beyond practical considerations. Geosci. Instrum. Method. Data Syst., 2, 199212, doi:10.5194/gi-2-199-2013.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., A. J. Busalacchi, and D. L. T. Anderson, 2010: A TOGA retrospective. Oceanography, 23, 86103, doi:10.5670/oceanog.2010.26.

    • Search Google Scholar
    • Export Citation
  • Moses, C. S., P. K. Swart, and R. E. Dodge, 2006a: Calibration of stable oxygen isotopes in Siderastrea radians (Cnidaria:Scleractinia): Implications for slow-growing corals. Geochem. Geophys. Geosyst., 7, Q09007, doi:10.1029/2005GC001196.

    • Search Google Scholar
    • Export Citation
  • Moses, C. S., P. K. Swart, and B. E. Rosenheim, 2006b: Evidence of multidecadal salinity variability in the eastern tropical North Atlantic. Paleoceanography, 21, PA3010, doi:10.1029/2005PA001257.

    • Search Google Scholar
    • Export Citation
  • Mucciarone, D. A., and R. B. Dunbar, 2003: Stable isotope record of El Niño–Southern Oscillation events from Easter Island. Easter Island: Scientific Exploration into the World’s Environmental Problems in Microcosm, J. Loret and J. T. Tanacredi, Eds., Kluwer Academic/Plenum Publishers, 113–132.

  • Nemhauser, G., L. Wolsey, and M. Fisher, 1978: An analysis of the approximations for maximizing submodular set functions. Math. Program., 14, 265294, doi:10.1007/BF01588971.

    • Search Google Scholar
    • Export Citation
  • Pfeiffer, M., O. Timm, W.-C. Dullo, and S. Podlech, 2004: Oceanic forcing of interannual and multidecadal climate variability in the southwestern Indian Ocean: Evidence from a 160 year coral isotopic record (La Réunion, 55°E, 21°S). Paleoceanography, 19, PA4006, doi:10.1029/2003PA000964.

    • Search Google Scholar
    • Export Citation
  • Quinn, T. M., T. J. Crowley, F. W. Taylor, C. Henin, P. Joannot, and Y. Join, 1998: A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D. Paleoceanography, 13, 412426, doi:10.1029/98PA00401.

    • Search Google Scholar
    • Export Citation
  • Quinn, T. M., F. W. Taylor, and T. J. Crowley, 2006: Coral-based climate variability in the western Pacific warm pool since 1867. J. Geophys. Res., 111, C11006, doi:10.1029/2005JC003243.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, M., A. Shemesh, R. Yam, K. Sakai, and Y. Loya, 2006: Impact of the 1998 bleaching event on δ18O records of Okinawa corals. Mar. Ecol. Prog. Ser., 314, 127133, doi:10.3354/meps314127.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., 2012: Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. Wiley Interdiscip. Rev.: Climate Change, 3, 6377, doi:10.1002/wcc.149.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, E. Zorita, J. F. González-Rouco, and M. N. Evans, 2011: Spatial performance of four climate field reconstruction methods targeting the Common Era. Geophys. Res. Lett., 38, L11705, doi:10.1029/2011GL047372.

    • Search Google Scholar
    • Export Citation
  • Steiger, N. J., G. J. Hakim, E. J. Steig, D. S. Battisti, and G. H. Roe, 2014: Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Climate, 27, 426441, doi:10.1175/JCLI-D-12-00693.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. M., T. R. Ault, M. N. Evans, J. E. Cole, and J. Emile-Geay, 2011: Comparison of observed and simulated tropical climate trends using a forward model of coral of δ18O. Geophys. Res. Lett., 38, L14706, doi:10.1029/2011GL048224.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., and Coauthors, 2015: Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography, 30, 226252, doi:10.1002/2014PA002717.

    • Search Google Scholar
    • Export Citation
  • Tudhope, A. W., G. B. Shimmield, C. P. Chilcott, M. Jebb, A. E. Fallick, and A. N. Dalgleish, 1995: Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation; oxygen isotope records from massive corals, Papua New Guinea. Earth Planet. Sci. Lett., 136, 575590, doi:10.1016/0012-821X(95)00156-7.

    • Search Google Scholar
    • Export Citation
  • Tudhope, A. W., and Coauthors, 2001: Variability in the El Niño–Southern Oscillation through a glacial–interglacial cycle. Science, 291, 15111517, doi:10.1126/science.1057969.

    • Search Google Scholar
    • Export Citation
  • Urban, F. E., J. E. Cole, and J. T. Overpeck, 2000: Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature, 407, 989993, doi:10.1038/35039597.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., E. Zorita, J. M. Jones, Y. Dimitriev, F. González-Rouco, and S. F. B. Tett, 2004: Reconstructing past climate from noisy data. Science, 306, 679682, doi:10.1126/science.1096109.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Emile-Geay, D. Guillot, J. E. Smerdon, and B. Rajaratnam, 2014: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Climate Past, 10, 119, doi:10.5194/cp-10-1-2014.

    • Search Google Scholar
    • Export Citation
  • Wellington, G. M., R. B. Dunbar, and G. Merlen, 1996: Calibration of stable oxygen isotope signatures in Galápagos corals. Paleoceanography, 11, 467480, doi:10.1029/96PA01023.

    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., and L. M. Berliner, 2007: A Bayesian tutorial for data assimilation. Physica D, 230, 116, doi:10.1016/j.physd.2006.09.017.

    • Search Google Scholar
    • Export Citation
  • Winter, A., T. Oba, H. Ishioroshi, T. Watanabe, and J. Christy, 2000: Tropical sea surface temperatures: Two-to-three degrees cooler than present during the Little Ice Age. Geophys. Res. Lett., 27, 33653368, doi:10.1029/2000GL011426.

    • Search Google Scholar
    • Export Citation
  • Wu, H. C., and A. G. Grottoli, 2010: Stable oxygen isotope records of corals and sclerosponge in the western Pacific warm pool. Coral Reefs, 29, 413418, doi:10.1007/s00338-009-0576-7.

    • Search Google Scholar
    • Export Citation
  • Zimmerman, D. L., 2006: Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction. Environmetrics, 17, 635652, doi:10.1002/env.769.

    • Search Google Scholar
    • Export Citation
  • Zinke, J., W.-C. Dullo, G. A. Heiss, and A. Eisenhauer, 2004: ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995. Earth Planet. Sci. Lett., 228, 177194, doi:10.1016/j.epsl.2004.09.028.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 500 137 9
PDF Downloads 291 76 5