High-Resolution Future Projections of Temperature and Precipitation in the Canary Islands

Francisco J. Expósito Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, La Laguna, Canary Islands, Spain

Search for other papers by Francisco J. Expósito in
Current site
Google Scholar
PubMed
Close
,
Albano González Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, La Laguna, Canary Islands, Spain

Search for other papers by Albano González in
Current site
Google Scholar
PubMed
Close
,
Juan C. Pérez Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, La Laguna, Canary Islands, Spain

Search for other papers by Juan C. Pérez in
Current site
Google Scholar
PubMed
Close
,
Juan P. Díaz Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, La Laguna, Canary Islands, Spain

Search for other papers by Juan P. Díaz in
Current site
Google Scholar
PubMed
Close
, and
David Taima Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, La Laguna, Canary Islands, Spain

Search for other papers by David Taima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The complex orography of the Canary Islands favors the creation of microclimates, which cannot be studied using global climate models or regional models with moderate resolution. In this work, WRF is used to perform a dynamic climate regionalization in the archipelago, using the pseudo–global warming technique to compute the initial and boundary conditions from a reanalysis dataset and from results of 14 global climate models. The simulations were performed for three decades, one at present (1995–2004) and two in the future (2045–54 and 2090–99), and for two different greenhouse gas scenarios (RCP4.5 and RCP8.5), defined in phase 5 of the Coupled Model Intercomparison Project. The obtained results, at a 5-km horizontal resolution, show a clear dependence of temperature increase with height and a positive change in diurnal temperature range, which is mainly due to a reduction in soil moisture and a slight decrease in cloud cover. This negative change in soil moisture is mainly a consequence of a decrease in precipitation, although the evaluation of simulated reduction in precipitation does not show statistical significance in most of the Canary Islands for the analyzed periods and scenarios.

Corresponding author address: Francisco J. Expósito, Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain. E-mail: fexposit@ull.es

Abstract

The complex orography of the Canary Islands favors the creation of microclimates, which cannot be studied using global climate models or regional models with moderate resolution. In this work, WRF is used to perform a dynamic climate regionalization in the archipelago, using the pseudo–global warming technique to compute the initial and boundary conditions from a reanalysis dataset and from results of 14 global climate models. The simulations were performed for three decades, one at present (1995–2004) and two in the future (2045–54 and 2090–99), and for two different greenhouse gas scenarios (RCP4.5 and RCP8.5), defined in phase 5 of the Coupled Model Intercomparison Project. The obtained results, at a 5-km horizontal resolution, show a clear dependence of temperature increase with height and a positive change in diurnal temperature range, which is mainly due to a reduction in soil moisture and a slight decrease in cloud cover. This negative change in soil moisture is mainly a consequence of a decrease in precipitation, although the evaluation of simulated reduction in precipitation does not show statistical significance in most of the Canary Islands for the analyzed periods and scenarios.

Corresponding author address: Francisco J. Expósito, Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain. E-mail: fexposit@ull.es
Save
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp., doi:10.5065/D63N21CH.

  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., D. Gallego, E. Hernández, L. Gimeno, P. Ribera, and N. Calvo, 2003: Precipitation trends in the Canary Islands. Int. J. Climatol., 23, 235241, doi:10.1002/joc.870.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288296, doi:10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/cbo9781107415324.

  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability—Part A: Global and Sectoral Aspects. Cambridge University Press, 1132 pp., doi:10.1017/CBO9781107415379.001.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, and T. Yasunari, 2008: Downscaling of the climatic change in the mei-yu rainband in East Asia by a pseudo climate simulation method. SOLA, 4, 7376, doi:10.2151/sola.2008-019.

    • Search Google Scholar
    • Export Citation
  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue, 2009: Intermodel variability of future changes in the baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803.

    • Search Google Scholar
    • Export Citation
  • Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. Final Rep. of the Research Project on the Impact of Climate Changes on Agricultural Production System in Arid Areas (ICCAP), Vol. 10, Research Institute for Humanity and Nature, 43–46. [Available online at http://www.chikyu.ac.jp/P-C09/ICCAP/ICCAP_Final_Report/2/4-climate_kimura.pdf.]

  • Lauer, A., C. Zhang, O. Elison-Timm, Y. Wang, and K. Hamilton, 2013: Downscaling of climate change in the Hawaii region using CMIP5 results: On the choice of the forcing fields. J. Climate, 26, 10 00610 030, doi:10.1175/JCLI-D-13-00126.1.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, doi:10.1088/1748-9326/9/8/084002.

  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research. Bull. Amer. Meteor. Soc., 84, 8995, doi:10.1175/BAMS-84-1-89.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F., P. Stott, D. Mitchell, N. Christidis, N. Gillett, L. Haimberger, J. Perlwitz, and P. Thorne, 2013: Models versus radiosondes in the free atmosphere: A new detection and attribution analysis of temperature. J. Geophys. Res. Atmos., 118, 26092619, doi:10.1002/jgrd.50255.

    • Search Google Scholar
    • Export Citation
  • Martín, J. L., J. Bethencourt, and E. Cuevas-Agulló, 2012: Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Climatic Change, 114, 343355, doi:10.1007/s10584-012-0407-7.

    • Search Google Scholar
    • Export Citation
  • Mestre, A., and L. Felipe, Eds., 2012: Atlas Climático de los Archipiélagos de Canarias, Madeira y Azores: Temperatura del Aire y Precipitación (1971–2000). Agencia estatal de Meteorología de España e Instituto de Meteorología de Portugal, 78 pp.

  • Osborn, T. J., 2006: Recent variations in the winter North Atlantic oscillation. Weather, 61, 353355, doi:10.1256/wea.190.06.

  • Pepin, N., and J. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett., 35, L14701, doi:10.1029/2008GL034026.

    • Search Google Scholar
    • Export Citation
  • Pérez, J., J. Díaz, A. González, J. Expósito, F. Rivera-López, and D. Taima, 2014: Evaluation of WRF parameterizations for dynamical downscaling in the Canary Islands. J. Climate, 27, 56115631, doi:10.1175/JCLI-D-13-00458.1.

    • Search Google Scholar
    • Export Citation
  • Rangwala, I., and J. R. Miller, 2012: Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change, 114, 527547, doi:10.1007/s10584-012-0419-3.

    • Search Google Scholar
    • Export Citation
  • Rangwala, I., E. Sinsky, and J. R. Miller, 2013: Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett., 8, 024040, doi:10.1088/1748-9326/8/2/024040.

  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Sanroma, E., E. Palle, and A. Sanchez-Lorenzo, 2010: Long-term changes in insolation and temperatures at different altitudes. Environ. Res. Lett., 5, 024006, doi:10.1088/1748-9326/5/2/024006.

  • Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144154, doi:10.1016/j.jhydrol.2006.07.023.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, A. Lauer, and K. Hamilton, 2012: Configuration and evaluation of the WRF model for the study of Hawaiian regional climate. Mon. Wea. Rev., 140, 32593277, doi:10.1175/MWR-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1191 471 31
PDF Downloads 1053 442 27