Estimation of Time-Averaged Surface Divergence and Vorticity from Satellite Ocean Vector Winds

Larry W. O’Neill College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Larry W. O’Neill in
Current site
Google Scholar
PubMed
Close
,
Tracy Haack College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Tracy Haack in
Current site
Google Scholar
PubMed
Close
, and
Theodore Durland College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Theodore Durland in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two methods of computing the time-mean divergence and vorticity from satellite vector winds in rain-free (RF) and all-weather (AW) conditions are investigated. Consequences of removing rain-contaminated winds on the mean divergence and vorticity depend strongly on the order in which the time-average and spatial derivative operations are applied. Taking derivatives first and averages second (DFAS_RF) incorporates only those RF winds measured at the same time into the spatial derivatives. While preferable mathematically, this produces mean fields biased relative to their AW counterparts because of the exclusion of convergence and cyclonic vorticity often associated with rain. Conversely, taking averages first and derivatives second (AFDS_RF) incorporates all RF winds into the time-mean spatial derivatives, even those not measured coincidentally. While questionable, the AFDS_RF divergence and vorticity surprisingly appears qualitatively consistent with the AW means, despite using only RF winds. The analysis addresses whether the AFDS_RF method accurately estimates the AW mean divergence and vorticity.

Model simulations indicate that the critical distinction between these two methods is the inclusion of typically convergent and cyclonic winds bordering rain patches in the AFDS_RF method. While this additional information removes some of the sampling bias in the DFAS_RF method, it is shown that the AFDS_RF method nonetheless provides only marginal estimates of the mean AW divergence and vorticity given sufficient time averaging and spatial smoothing. Use of the AFDS_RF method is thus not recommended.

Current Affiliation: Marine Meteorology Division, Naval Research Laboratory, Monterey, California.

Corresponding author address: Larry W. O’Neill, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, OR 97331. E-mail: loneill@coas.oregonstate.edu

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

Two methods of computing the time-mean divergence and vorticity from satellite vector winds in rain-free (RF) and all-weather (AW) conditions are investigated. Consequences of removing rain-contaminated winds on the mean divergence and vorticity depend strongly on the order in which the time-average and spatial derivative operations are applied. Taking derivatives first and averages second (DFAS_RF) incorporates only those RF winds measured at the same time into the spatial derivatives. While preferable mathematically, this produces mean fields biased relative to their AW counterparts because of the exclusion of convergence and cyclonic vorticity often associated with rain. Conversely, taking averages first and derivatives second (AFDS_RF) incorporates all RF winds into the time-mean spatial derivatives, even those not measured coincidentally. While questionable, the AFDS_RF divergence and vorticity surprisingly appears qualitatively consistent with the AW means, despite using only RF winds. The analysis addresses whether the AFDS_RF method accurately estimates the AW mean divergence and vorticity.

Model simulations indicate that the critical distinction between these two methods is the inclusion of typically convergent and cyclonic winds bordering rain patches in the AFDS_RF method. While this additional information removes some of the sampling bias in the DFAS_RF method, it is shown that the AFDS_RF method nonetheless provides only marginal estimates of the mean AW divergence and vorticity given sufficient time averaging and spatial smoothing. Use of the AFDS_RF method is thus not recommended.

Current Affiliation: Marine Meteorology Division, Naval Research Laboratory, Monterey, California.

Corresponding author address: Larry W. O’Neill, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, OR 97331. E-mail: loneill@coas.oregonstate.edu

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, doi:10.1175/MWR-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and K. M. Ford, 2010: Uncertainty in scatterometer-derived vorticity. J. Atmos. Oceanic Technol., 27, 594603, doi:10.1175/2009JTECHO689.1.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., C. R. Homeyer, and D. G. Stone, 2009: A comparison of precipitation estimates in the tropics and subtropics. J. Appl. Meteor. Climatol., 48, 13351344, doi:10.1175/2009JAMC2149.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. H. Freilich, 2005: Scatterometer–based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133, 409429, doi:10.1175/MWR-2861.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and T. T. Warner, 1993: The impact of sea surface temperature resolution on mesoscale coastal processes during GALE IOP 2. Mon. Wea. Rev., 121, 313334, doi:10.1175/1520-0493(1993)121<0313:TIOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., and D. G. Long, 2004: Evaluating the effect of rain on SeaWinds scatterometer measurements. J. Geophys. Res., 109, C02005, doi:10.1029/2002JC001741.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., H. C. Graber, and M. J. Caruso, 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 20492062, doi:10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Figa-Saldaña, J., J. J. W. Wilson, E. Attema, R. V. Gelsthorpe, M. R. Drinkwater, and A. Stoffelen, 2002: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens., 28, 404412, doi:10.5589/m02-035.

    • Search Google Scholar
    • Export Citation
  • Fisher, B., and D. B. Wolff, 2011: Satellite sampling and retrieval errors in regional monthly rain estimates from TMI, AMSR-E, SSM/I, AMSU-B, and the TRMM PR. J. Appl. Meteor. Climatol., 50, 9941023, doi:10.1175/2010JAMC2487.1.

    • Search Google Scholar
    • Export Citation
  • Fore, A. G., B. W. Stiles, A. H. Chau, B. A. Williams, R. S. Dunbar, and E. Rodríguez, 2014: Point-wise wind retrieval and ambiguity removal improvements for the QuikSCAT climatological data set. IEEE Trans. Geosci. Remote Sens., 52, 51–59, doi:10.1109/TGRS.2012.2235843.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and R. S. Dunbar, 1999: The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. J. Geophys. Res., 104, 11 23111 246, doi:10.1029/1998JC900091.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and B. A. Vanhoff, 2006: The accuracy of the preliminary WindSat vector wind measurements: Comparisons with NDBC buoys and QuikSCAT. IEEE Trans. Geosci. Remote Sens., 44, 622637, doi:10.1109/TGRS.2006.869928.

    • Search Google Scholar
    • Export Citation
  • Gaiser, P. W., and Coauthors, 2004: The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 23472361, doi:10.1109/TGRS.2004.836867.

    • Search Google Scholar
    • Export Citation
  • Haack, T., S. D. Burk, and R. M. Hodur, 2005: U.S. West Coast surface heat fluxes, wind stress, and wind stress curl from a mesoscale model. Mon. Wea. Rev., 133, 32023216, doi:10.1175/MWR3025.1.

    • Search Google Scholar
    • Export Citation
  • Haack, T., D. Chelton, J. Pullen, J. D. Doyle, and M. Schlax, 2008: Summertime influence of SST on surface wind stress off the U.S. West Coast from the U.S. Navy COAMPS model. J. Phys. Oceanogr., 38, 24142437, doi:10.1175/2008JPO3870.1.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794, doi:10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, X., C. H. Bishop, T. Holt, and L. W. O’Neill, 2011: Impacts of sea surface temperature uncertainty on the western North Pacific subtropical high (WNPSH) and rainfall. Wea. Forecasting, 26, 371387, doi:10.1175/WAF-D-10-05007.1.

    • Search Google Scholar
    • Export Citation
  • Huddleston, J. N., and B. W. Stiles, 2000: A multidimensional histogram rain-flagging technique for SeaWinds on QuikSCAT. Proc. IEEE Int. Conf. on Geoscience and Remote Sensing Symp. 2000, Honolulu, HI, Institute of Electrical and Electronics Engineers, 1232–1234, doi:10.1109/IGARSS.2000.858077.

  • Joyce, T., Y. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192, doi:10.1175/2008JCLI2690.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, doi:10.1175/2010JCLI3346.1.

    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T. J., and S.-P. Xie, 2015: ASCAT observations of downdrafts from mesoscale convective systems. Geophys. Res. Lett., 42, 19511958, doi:10.1002/2015GL063025.

    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T. J., N. Schneider, and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 16981718, doi:10.1175/JCLI-D-13-00101.1.

    • Search Google Scholar
    • Export Citation
  • Kindle, J. C., R. M. Hodur, S. deRada, J. Paduan, L. Rosenfeld, and F. Chavez, 2002: A COAMPS reanalysis for the Eastern Pacific: Properties of the diurnal sea breeze along the central California coast. Geophys. Res. Lett., 29, 22032206, doi:10.1029/2002GL015566.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A., 1933: Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Attuari, 4, 8391.

  • Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie, 2010: Precipitation response to the Gulf Stream in an atmospheric GCM. J. Climate, 23, 36763698, doi:10.1175/2010JCLI3261.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall in the tropical western Pacific. J. Atmos. Sci., 69, 29832994, doi:10.1175/JAS-D-11-0245.1.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and A. Y. Hou, 2008: Evaluation of coincident passive microwave rainfall estimates using TRMM PR and ground measurements as references. J. Appl. Meteor. Climatol., 47, 31703187, doi:10.1175/2008JAMC1893.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. Jet Propulsion Laboratory Publ. 96-17, 16 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970010322.pdf.]

  • Mapes, B., R. Milliff, and J. Morzel, 2009: Composite life cycle of maritime tropical mesoscale convective systems in scatterometer and microwave satellite observations. J. Atmos. Sci., 66, 199208, doi:10.1175/2008JAS2746.1.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2009: Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 47, 30653083, doi:10.1109/TGRS.2009.2027012.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., and J. Morzel, 2001: The global distribution of the time-average wind stress curl from NSCAT. J. Atmos. Sci., 58, 109131, doi:10.1175/1520-0469(2001)058<0109:TGDOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., J. Morzel, D. B. Chelton, and M. H. Freilich, 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. Oceanic Technol., 21, 12161231, doi:10.1175/1520-0426(2004)021<1216:WSCAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., 2006: Evaluation of WindSat wind vector performance with respect to QuikSCAT estimates. IEEE Trans. Geosci. Remote Sens., 44, 638644, doi:10.1109/TGRS.2005.855997.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281, doi:10.1175/2009JCLI2613.1.

    • Search Google Scholar
    • Export Citation
  • Park, K.-A., P. C. Cornillon, and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111, C03021, doi:10.1029/2005JC003016.

    • Search Google Scholar
    • Export Citation
  • Portabella, M., and A. Stoffelen, 2001: Rain detection and quality control of SeaWinds. J. Atmos. Oceanic Technol., 18, 11711183, doi:10.1175/1520-0426(2001)018<1171:RDAQCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Portabella, M., and A. Stoffelen, 2002: A comparison of KNMI quality control and JPL rain flag for SeaWinds. Can. J. Remote Sens., 28, 424430, doi:10.5589/m02-040.

    • Search Google Scholar
    • Export Citation
  • Portabella, M., A. Stoffelen, W. Lin, A. Turiel, A. Verhoef, J. Verspeek, and J. Ballabrera-Poy, 2012: Rain effects on ASCAT-retrieved winds: Toward an improved quality control. IEEE Trans. Geosci. Remote Sens., 50, 24952506, doi:10.1109/TGRS.2012.2185933.

    • Search Google Scholar
    • Export Citation
  • Pullen, J., J. D. Doyle, and R. P. Signell, 2006: Two-way air–sea coupling: A study of the Adriatic. Mon. Wea. Rev., 134, 14651483, doi:10.1175/MWR3137.1.

    • Search Google Scholar
    • Export Citation
  • Pullen, J., J. D. Doyle, T. Haack, C. Dorman, R. P. Signell, and C. M. Lee, 2007: Bora event variability and the role of air–sea feedback. J. Geophys. Res., 112, C03S18, doi:10.1029/2006JC003726.

    • Search Google Scholar
    • Export Citation
  • Ross, D. B., V. J. Cardone, J. Overland, R. D. McPherson, W. J. Pierson Jr., and T. Yu, 1985: Oceanic surface winds. Advances in Geophysics, Vol. 27, Academic Press, 101140, doi:10.1016/S0065-2687(08)60404-5.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, doi:10.1175/2010MWR3294.1.

    • Search Google Scholar
    • Export Citation
  • SeaPac, 2014: QuikSCAT level 2B ocean wind vectors in 12.5km slice composites, version 3. PO.DAAC, accessed 1 July 2014, doi:10.5067/QSX12-L2B01.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274–319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Smirnov, N., 1948: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat., 19, 279281, doi:10.1214/aoms/1177730256.

    • Search Google Scholar
    • Export Citation
  • Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111, C12006, doi:10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Stiles, B. W., and S. H. Yueh, 2002: Impact of rain on spaceborne Ku-band wind scatterometer data. IEEE Trans. Geosci. Remote Sens., 40, 19731983, doi:10.1109/TGRS.2002.803846.

    • Search Google Scholar
    • Export Citation
  • Stiles, B. W., and R. Dunbar, 2010: A neural network technique for improving the accuracy of scatterometer winds in rainy conditions. IEEE Trans. Geosci. Remote Sens., 48, 31143122, doi:10.1109/TGRS.2010.2049362.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., M. A. Bourassa, and J. Tongue, 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19, 738746, doi:10.1175/1520-0426(2002)019<0738:EORRAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., B. W. Stiles, S. M. Hristova-Veleva, D. G. Long, D. K. Smith, K. A. Hilburn, and W. L. Jones, 2012: Challenges to satellite sensors of ocean winds: Addressing precipitation effects. J. Atmos. Oceanic Technol., 29, 356374, doi:10.1175/JTECH-D-11-00054.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 524 221 14
PDF Downloads 260 76 8