Sea Surface Temperature Thresholds for Tropical Cyclone Formation

K. J. Tory Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by K. J. Tory in
Current site
Google Scholar
PubMed
Close
and
R. A. Dare Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by R. A. Dare in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Almost 70 years ago a sea surface temperature (SST) threshold of 26°–27°C, below which tropical cyclones (TCs) did not form, was proposed, based on a qualitative assessment of warm-season global SST and known TC formation regions. This threshold was widely accepted without further testing, until a recent study suggested a threshold of 25.5°C. That study is revisited here by reexamining the SST for all global TC formations from 1981 to 2008 using (i) a broader range of SST threshold values, (ii) an improved method for identifying subtropical storms—any storm that forms poleward of the subtropical jet (STJ), and (iii) a range of TC formation gestation periods, which refers to a time interval prior to formation in which the SST threshold is exceeded for at least one 6-h period. Consequently, thresholds reported in this paper are expressed as a combination of SST and gestation period.

Using the STJ position to identify and exclude subtropical storms, the threshold of 25.5°C SST–48-h gestation period was found to be robust, but conservative. An examination of TCs of questionable validity (e.g., weak, short lived, and/or storms that formed with baroclinic influences) revealed a further 26 storms (1.2%) that could arguably be excluded from the analysis. With these storms removed, several SST–gestation period threshold combinations were found to be valid, including 25.5°C–18 h and 26.5°C–36 h. A practical threshold combination of 26.5°C–24 h is proposed as only two additional storms failed to meet this threshold, which supports the often-quoted 26.5°C SST necessary condition for TC formation.

Corresponding author address: Dr. Kevin J. Tory, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: k.tory@bom.gov.au

Abstract

Almost 70 years ago a sea surface temperature (SST) threshold of 26°–27°C, below which tropical cyclones (TCs) did not form, was proposed, based on a qualitative assessment of warm-season global SST and known TC formation regions. This threshold was widely accepted without further testing, until a recent study suggested a threshold of 25.5°C. That study is revisited here by reexamining the SST for all global TC formations from 1981 to 2008 using (i) a broader range of SST threshold values, (ii) an improved method for identifying subtropical storms—any storm that forms poleward of the subtropical jet (STJ), and (iii) a range of TC formation gestation periods, which refers to a time interval prior to formation in which the SST threshold is exceeded for at least one 6-h period. Consequently, thresholds reported in this paper are expressed as a combination of SST and gestation period.

Using the STJ position to identify and exclude subtropical storms, the threshold of 25.5°C SST–48-h gestation period was found to be robust, but conservative. An examination of TCs of questionable validity (e.g., weak, short lived, and/or storms that formed with baroclinic influences) revealed a further 26 storms (1.2%) that could arguably be excluded from the analysis. With these storms removed, several SST–gestation period threshold combinations were found to be valid, including 25.5°C–18 h and 26.5°C–36 h. A practical threshold combination of 26.5°C–24 h is proposed as only two additional storms failed to meet this threshold, which supports the often-quoted 26.5°C SST necessary condition for TC formation.

Corresponding author address: Dr. Kevin J. Tory, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: k.tory@bom.gov.au
Save
  • Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208 pp.

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011: The sea surface temperature condition for tropical cyclogenesis. J. Climate, 24, 45704576, doi:10.1175/JCLI-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Dengler, K., 1997: A numerical study of the effects of land proximity and changes in sea surface temperature on hurricane tracks. Quart. J. Roy. Meteor. Soc., 123, 13071321, doi:10.1002/qj.49712354109.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1973: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Memo. NESS 45, 19 pp.

  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO Tech. Doc. WMO/TD-1555, 52 pp.

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, doi:10.1038/nature13278.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modelling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, doi:10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, R. W. Moore, and O. W. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, doi:10.1175/MWR-D-12-00186.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment– Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, doi:10.5194/acp-10-9879-2010.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, doi:10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, doi:10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res., 17, 445454.

    • Search Google Scholar
    • Export Citation
  • Palmén, E. H., 1948: On the formation and structure of tropical cyclones. Geophysica, 3, 2638.

  • Palmén, E. H., 1956: A review of knowledge on the formation and development of tropical cyclones. Proc. Tropical Cyclone Symp., Brisbane, QLD, Australia, Bureau of Meteorology, 213–231.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E., W. Olsen, J. Halverson, J. Simpson, and H. Pierce, 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39, 19832006, doi:10.1175/1520-0450(2001)040<1983:EFOSPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, 2nd ed. J. C. L. Chan and J. D. Kepert, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, World Scientific, 55–91.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., S. S. Chand, R. A. Dare, and J. L. McBride, 2013a: An assessment of a model-independent tropical cyclone detection procedure in selected CMIP3 global climate models. J. Climate, 26, 55085522, doi:10.1175/JCLI-D-12-00511.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., S. S. Chand, R. A. Dare, and J. L. McBride, 2013b: The development and assessment of a model-, grid-, and basin-independent tropical cyclone detection scheme. J. Climate, 26, 54935507, doi:10.1175/JCLI-D-12-00510.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., S. S. Chand, J. L. McBride, H. Ye, and R. A. Dare, 2013c: Projected changes in late-twenty-first century tropical cyclone frequency in 13 coupled climate models from the Coupled Model Intercomparison Project Phase 5. J. Climate, 26, 99469959, doi:10.1175/JCLI-D-13-00010.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., R. A. Dare, N. E. Davidson, J. L. McBride, and S. S. Chand, 2013d: The importance of low-deformation vorticity in tropical cyclone formation. Atmos. Chem. Phys., 13, 21152132, doi:10.5194/acp-13-2115-2013.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, doi:10.1175/JAS-D-11-0298.1.

  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010a: Genesis of pre–Hurricane Felix (2007). Part I: The role of the wave critical layer. J. Atmos. Sci., 67, 17111729, doi:10.1175/2009JAS3420.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, doi:10.1175/2010JAS3435.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84C, 31733183, doi:10.1029/JC084iC06p03173.

  • Willoughby, H. E., 2009: Diabatically induced secondary flows in tropical cyclones. Part II: Periodic forcing. Mon. Wea. Rev., 137, 822835, doi:10.1175/2008MWR2658.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5002 1229 100
PDF Downloads 3029 541 41