A New Method of Comparing Forcing Agents in Climate Models

Ben Kravitz Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Ben Kravitz in
Current site
Google Scholar
PubMed
Close
,
Douglas G. MacMartin Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Douglas G. MacMartin in
Current site
Google Scholar
PubMed
Close
,
Philip J. Rasch Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Philip J. Rasch in
Current site
Google Scholar
PubMed
Close
, and
Andrew J. Jarvis Lancaster Environment Centre, University of Lancaster, Lancaster, United Kingdom

Search for other papers by Andrew J. Jarvis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors describe a new method of comparing different climate forcing agents (e.g., CO2 concentration, CH4 concentration, and total solar irradiance) in climate models that circumvents many of the difficulties associated with explicit calculations of efficacy. This is achieved by introducing an explicit feedback loop external to a climate model that adjusts one forcing agent to balance another while keeping global-mean surface temperature constant. The convergence time of this feedback loop can be adjusted, allowing for comparisons of forcing agents to be achieved with relatively short simulations. Comparisons between forcing agents are highly linear in concordance with predicted scaling relationships; for example, the global-mean climate response to a doubling of the CO2 concentration is equivalent to that of a 2.1% change in total solar irradiance. This result is independent of the magnitude of the forcing agent (within the range of radiative forcings considered here) and is consistent across two different climate models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00663.s1.

Corresponding author address: Ben Kravitz, Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-30, Richland, WA 99352. E-mail: ben.kravitz@pnnl.gov

Abstract

The authors describe a new method of comparing different climate forcing agents (e.g., CO2 concentration, CH4 concentration, and total solar irradiance) in climate models that circumvents many of the difficulties associated with explicit calculations of efficacy. This is achieved by introducing an explicit feedback loop external to a climate model that adjusts one forcing agent to balance another while keeping global-mean surface temperature constant. The convergence time of this feedback loop can be adjusted, allowing for comparisons of forcing agents to be achieved with relatively short simulations. Comparisons between forcing agents are highly linear in concordance with predicted scaling relationships; for example, the global-mean climate response to a doubling of the CO2 concentration is equivalent to that of a 2.1% change in total solar irradiance. This result is independent of the magnitude of the forcing agent (within the range of radiative forcings considered here) and is consistent across two different climate models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00663.s1.

Corresponding author address: Ben Kravitz, Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-30, Richland, WA 99352. E-mail: ben.kravitz@pnnl.gov

Supplementary Materials

    • Supplemental Materials (PDF 69.44 KB)
Save
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 2557–2570, doi:10.1175/2008JCLI2759.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, P. M. Forster, and M. J. Webb, 2012: Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619–635, doi:10.1007/s10712-011-9152-0.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 4518–4534, doi:10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2013: State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA, 110, 14 162–14 167, doi:10.1073/pnas.1303365110.

    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, and K. Caldeira, 2012: Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ. Res. Lett., 7, 034015, doi:10.1088/1748-9326/7/3/034015.

    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 3079–3097, doi:10.1175/2009JCLI2652.1.

    • Search Google Scholar
    • Export Citation
  • Field, C., R. Jackson, and H. Mooney, 1995: Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ., 18, 1214–1255, doi:10.1111/j.1365-3040.1995.tb00630.x.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. F., R. S. Freckleton, and K. P. Shine, 1997: On aspects of the concept of radiative forcing. Climate Dyn., 13, 547–560, doi:10.1007/s003820050182.

    • Search Google Scholar
    • Export Citation
  • Fuglestvedt, J. S., T. K. Berntsen, O. Godal, R. Sausen, K. P. Shine, and T. Skodvin, 2003: Metrics of climate change: Assessing radiative forcing and emission indices. Climatic Change, 58, 267–331, doi:10.1023/A:1023905326842.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., and K. Caldeira, 2000: Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett., 27, 2141–2144, doi:10.1029/1999GL006086.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., K. E. Taylor, P. B. Duffy, B. D. Santer, A. S. Grossman, and K. E. Grant, 2001: Limitations of the equivalent CO2 approximation in climate change simulations. J. Geophys. Res., 106, 22 593–22 603, doi:10.1029/2000JD000054.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 58–71, doi:10.1175/2007JCLI1834.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., C. D. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 5232–5250, doi:10.1175/2009JCLI2949.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Haywood, J., L. J. Donner, A. Jones, and J.-C. Golaz, 2009: Global indirect radiative forcing caused by aerosols: IPCC (2007) and beyond. Clouds in the Perturbed Climate System:Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 451–468.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 1339–1360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., 2011: The magnitudes and timescales of global mean surface temperature feedbacks in climate models. Earth Syst. Dyn., 2, 213–221, doi:10.5194/esd-2-213-2011.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., and D. Leedal, 2012: The Geoengineering Model Intercomparison Project (GeoMIP): A control perspective. Atmos. Sci. Lett., 13, 157–163, doi:10.1002/asl.387.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., D. Leedal, C. J. Taylor, and P. Young, 2009: Stabilizing global mean surface temperature: A feedback control perspective. Environ. Modell. Software, 24, 665–674, doi:10.1016/j.envsoft.2008.10.016.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., and Coauthors, 2013a: Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 8320–8332, doi:10.1002/jgrd.50646.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., and Coauthors, 2013b: An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project. J. Geophys. Res. Atmos., 118, 13 087–13 102, doi:10.1002/2013JD020502.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., D. G. MacMartin, D. T. Leedal, P. J. Rasch, and A. J. Jarvis, 2014: Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering. Environ. Res. Lett., 9, 044006, doi:10.1088/1748-9326/9/4/044006.

    • Search Google Scholar
    • Export Citation
  • MacMartin, D. G., D. W. Keith, B. Kravitz, and K. Caldeira, 2013: Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nat. Climate Change, 3, 365–368, doi:10.1038/nclimate1722.

    • Search Google Scholar
    • Export Citation
  • MacMartin, D. G., B. Kravitz, D. W. Keith, and A. Jarvis, 2014: Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering. Climate Dyn., 43, 243–258, doi:10.1007/s00382-013-1822-9.

    • Search Google Scholar
    • Export Citation
  • MacMynowski, D. G., H.-J. Shin, and K. Caldeira, 2011: The frequency response of temperature and precipitation in a climate model. Geophys. Res. Lett., 38, L16711, doi:10.1029/2011GL048623.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 2715–2718, doi:10.1029/98GL01908.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominanted by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181–184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and J. E. Penner, 2001: Indirect aerosol forcing, quasi forcing, and climate response. J. Climate, 14, 2960–2975, doi:10.1175/1520-0442(2001)014<2960:IAFQFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141–184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. John Wiley & Sons, 1232 pp.

  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 1402–1406, doi:10.1126/science.271.5254.1402.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 37–42, doi:10.1038/nature12829.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. Faluvegi, D. M. Koch, G. A. Schmidt, N. Unger, and S. E. Bauer, 2009: Improved attribution of climate forcing to emissions. Science, 326, 716–718, doi:10.1126/science.1174760.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 1998: The Kyoto Protocol: CO2, CH4 and climate implications. Geophys. Res. Lett., 25, 2285–2288, doi:10.1029/98GL01855.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 628 136 9
PDF Downloads 416 59 5