Wintertime North Pacific Teleconnection Patterns: Seasonal and Interannual Variability

Jiacan Yuan Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Jiacan Yuan in
Current site
Google Scholar
PubMed
Close
,
Benkui Tan Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Benkui Tan in
Current site
Google Scholar
PubMed
Close
,
Steven B. Feldstein Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
, and
Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The teleconnections of the wintertime North Pacific are examined from the continuum perspective with self-organizing map (SOM) analysis. Daily ERA-Interim data for the 1979–2011 period are used. It is found that most of the North Pacific teleconnections can be grouped into several Pacific–North American (PNA)-like, western Pacific (WP)-like, and east Pacific (EP)-like SOM patterns. Each of the SOM patterns has an e-folding time scale of 7–10 days.

The WP-like SOM patterns undergo a decline in their frequency from early to late winter, and vice versa for the EP-like SOM patterns, corresponding to an eastward seasonal shift of the North Pacific teleconnections. This seasonal shift is observed for both phases of the WP and EP patterns, and is only weakly sensitive to the phase of El Niño–Southern Oscillation. It is shown that the interannual variability of the PNA, WP, and EP can be interpreted as arising from interannual changes in the frequency of the corresponding SOM patterns. The WP- and EP-like SOM patterns are found to be associated with statistically significant sea ice cover anomalies over the Sea of Okhotsk and the Bering Sea. The low-level wind and temperature anomalies associated with these patterns are consistent with the changes in sea ice arising from both wind-driven sea ice motion and freezing and/or melting of sea ice due to horizontal temperature advection. Furthermore, widespread precipitation anomalies over the North Pacific are found for all three patterns.

Corresponding author address: Benkui Tan, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 209 Chengfu Road, North Building, Fifth Floor, Beijing 100871, China. E-mail: bktan@pku.edu.cn

Abstract

The teleconnections of the wintertime North Pacific are examined from the continuum perspective with self-organizing map (SOM) analysis. Daily ERA-Interim data for the 1979–2011 period are used. It is found that most of the North Pacific teleconnections can be grouped into several Pacific–North American (PNA)-like, western Pacific (WP)-like, and east Pacific (EP)-like SOM patterns. Each of the SOM patterns has an e-folding time scale of 7–10 days.

The WP-like SOM patterns undergo a decline in their frequency from early to late winter, and vice versa for the EP-like SOM patterns, corresponding to an eastward seasonal shift of the North Pacific teleconnections. This seasonal shift is observed for both phases of the WP and EP patterns, and is only weakly sensitive to the phase of El Niño–Southern Oscillation. It is shown that the interannual variability of the PNA, WP, and EP can be interpreted as arising from interannual changes in the frequency of the corresponding SOM patterns. The WP- and EP-like SOM patterns are found to be associated with statistically significant sea ice cover anomalies over the Sea of Okhotsk and the Bering Sea. The low-level wind and temperature anomalies associated with these patterns are consistent with the changes in sea ice arising from both wind-driven sea ice motion and freezing and/or melting of sea ice due to horizontal temperature advection. Furthermore, widespread precipitation anomalies over the North Pacific are found for all three patterns.

Corresponding author address: Benkui Tan, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 209 Chengfu Road, North Building, Fifth Floor, Beijing 100871, China. E-mail: bktan@pku.edu.cn
Save
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, doi:10.1175/2009JAS3270.1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cash, B. A., and S. Lee, 2001: Observed nonmodal growth of the Pacific–North American teleconnection pattern. J. Climate, 14, 10171028, doi:10.1175/1520-0442(2001)014<1017:ONGOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree, and A. Gershunov, 2010: Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276, doi:10.1073/pnas.0912391107.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553579, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, doi:10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 18971914, doi:10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection petterns. J. Climate, 13, 44304440, doi:10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, doi:10.1256/0035900021643683.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and S. Lee, 2014: Intraseasonal and interdecadal jet shifts in the Northern Hemisphere: The role of warm pool tropical convection and sea ice. J. Climate, 27, 64976518, doi:10.1175/JCLI-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and E. Hunter, 2006: New insight into the disappearing Arctic sea ice. Eos, Trans. Amer. Geophys. Union, 87, 509511, doi:10.1029/2006EO460001.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62, 32503267, doi:10.1175/JAS3536.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, doi:10.1175/2009JCLI3099.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546370, doi:10.1175/2008JCLI2380.1.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. Vol. 30, Springer Series in Information Sciences, Springer, 501 pp.

  • Kushnir, Y., and J. M. Wallace, 1989: Low-frequency variability in the Northern Hemisphere winter: Geographical distribution, structure, and time-scale dependence. J. Atmos. Sci., 46, 31223142, doi:10.1175/1520-0469(1989)046<3122:LFVITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, doi:10.1126/science.1225154.

    • Search Google Scholar
    • Export Citation
  • Leloup, J. A., Z. Lachkar, J. P. Boulanger, and S. Thiria, 2007: Detecting decadal changes in ENSO using neural networks. Climate Dyn., 28, 147162, doi:10.1007/s00382-006-0173-1.

    • Search Google Scholar
    • Export Citation
  • Linkin, M., and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, doi:10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • NSIDC, 2015: Arctic openings. [Available online at http://nsidc.org/arcticseaicenews/.]

  • Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, doi:10.1029/2004GL019492.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea-ice to the Arctic Oscillation. J. Climate, 15, 26482663, doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rousi, E., C. Anagnostopoulou, K. Tolika, and P. Maheras, 2015: Representing teleconnection patterns over Europe: A comparison of SOM and PCA methods. Atmos. Res., 152, 123137, doi:10.1016/j.atmosres.2013.11.010.

    • Search Google Scholar
    • Export Citation
  • Schuenemann, K. C., J. J. Cassano, and J. Finnis, 2009: Synoptic forcing of precipitation over Greenland: Climatology for 1961–99. J. Hydrometeor., 10, 6078, doi:10.1175/2008JHM1014.1.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784, doi:10.1175/JCLI3885.1.

    • Search Google Scholar
    • Export Citation
  • Tan, B., J. Yuan, Y. Dai, S. B. Feldstein, and S. Lee, 2015: The linkage between the eastern Pacific teleconnection pattern and convective heating over the tropical western Pacific. J. Climate, 28, 57835794, doi:10.1175/JCLI-D-14-00568.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87, 58455852, doi:10.1029/JC087iC08p05845.

    • Search Google Scholar
    • Export Citation
  • Tymvios, F., K. Savvidou, and S. C. Michaelides, 2010: Association of geopotential height patterns with heavy rainfall events in Cyprus. Adv. Geosci., 23, 7378, doi:10.5194/adgeo-23-73-2010.

    • Search Google Scholar
    • Export Citation
  • Uriarte, E. A., and F. D. Martín, 2005: Topology preservation in SOM. Int. J. Math. Comput. Sci., 1, 1922.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, doi:10.1175/JCLI3619.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, P., L. Suo, J. Yuan, and B. Tan, 2012: The East Pacific wavetrain: Its variability and impact on the atmospheric circulation in the boreal winter. Adv. Atmos. Sci., 29, 471483, doi:10.1007/s00376-011-0216-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 570 123 11
PDF Downloads 487 120 16