Projection of Summer Precipitation over the Southeastern United States in the Superparameterized CCSM4

Xiaojie Zhu Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Xiaojie Zhu in
Current site
Google Scholar
PubMed
Close
and
Cristiana Stan Center for Ocean–Land–Atmosphere Studies, and Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Cristiana Stan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Projections of the hydrological cycle over the southeastern United States are compared between CCSM4 and the superparameterized model (SP-CCSM4). Under the extreme forcing of the representative concentration pathway 8.5 (RCP8.5) climate change scenario, in Virginia, North Carolina, South Carolina, and Kentucky, SP-CCSM4 projects a decrease in summer precipitation, whereas the conventionally parameterized CCSM4 projects an increase in summer rainfall. The projected reduction in summer precipitation in SP-CCSM4 is due to the remote influence from the northwest intrusion of the North Atlantic subtropical high, as well as the local decrease of soil moisture content. Both models show that summer precipitation over the southern United States is characterized by a positive feedback with soil moisture. However, in CCSM4 rainfall increases with increasing soil moisture and in SP-CCSM4 rainfall decreases with decreasing soil moisture.

The different representation of cloud processes in the two models yields different responses of precipitation to the latent heat flux changes over the southeastern United States. Moreover, multivariate EOF analyses in the two models suggest that the local land–atmosphere interactions have a stronger influence on the projected changes of precipitation over the southeastern United States than does the North Atlantic subtropical high.

Corresponding author address: Xiaojie Zhu, Department of Statistics, Heroy Building, Southern Methodist University, Dallas, TX 75275. E-mail: xzhu@cola.iges.org; stan@cola.iges.org

Abstract

Projections of the hydrological cycle over the southeastern United States are compared between CCSM4 and the superparameterized model (SP-CCSM4). Under the extreme forcing of the representative concentration pathway 8.5 (RCP8.5) climate change scenario, in Virginia, North Carolina, South Carolina, and Kentucky, SP-CCSM4 projects a decrease in summer precipitation, whereas the conventionally parameterized CCSM4 projects an increase in summer rainfall. The projected reduction in summer precipitation in SP-CCSM4 is due to the remote influence from the northwest intrusion of the North Atlantic subtropical high, as well as the local decrease of soil moisture content. Both models show that summer precipitation over the southern United States is characterized by a positive feedback with soil moisture. However, in CCSM4 rainfall increases with increasing soil moisture and in SP-CCSM4 rainfall decreases with decreasing soil moisture.

The different representation of cloud processes in the two models yields different responses of precipitation to the latent heat flux changes over the southeastern United States. Moreover, multivariate EOF analyses in the two models suggest that the local land–atmosphere interactions have a stronger influence on the projected changes of precipitation over the southeastern United States than does the North Atlantic subtropical high.

Corresponding author address: Xiaojie Zhu, Department of Statistics, Heroy Building, Southern Methodist University, Dallas, TX 75275. E-mail: xzhu@cola.iges.org; stan@cola.iges.org
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., M. Branson, M. A. Burt, D. S. Abbot, Z. Kuang, D. A. Randall, and E. Tziperman, 2014: Effects of explicit atmospheric convection at high CO2. Proc. Natl. Acad. Sci. USA, 111, 10 94310 948, doi:10.1073/pnas.1407175111.

    • Search Google Scholar
    • Export Citation
  • Baigorria, G. A., J. W. Jones, and J. J. O’Brien, 2007: Understanding rainfall spatial variability in Southeast USA at different timescales. Int. J. Climatol., 27, 749760, doi:10.1002/joc.1435.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, doi:10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davy, R., and I. Esau, 2014: Global climate models’ bias in surface temperature trends and variability. Environ. Res. Lett., 9, 114024, doi:10.1088/1748-9326/9/11/114024.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20, 91112, doi:10.1175/JCLI3991.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolutions versus parameterization. Climate Dyn., 39, 399418, doi:10.1007/s00382-011-1127-9.

    • Search Google Scholar
    • Export Citation
  • Froidevaux, P., L. Schlemmer, J. Schmidli, W. Langhans, and C. Schär, 2014: Influence of the background wind on the local soil moisture–prediction feedback. J. Atmos. Sci., 71, 782799, doi:10.1175/JAS-D-13-0180.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952, doi:10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, doi:10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2012: AMO- and ENSO-driven summertime circulation and precipitation variations in North America. J. Climate, 25, 64776495, doi:10.1175/JCLI-D-11-00520.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., S. Feng, and R. J. Oglesby, 2011: Variations in North American summer precipitation driven by the Atlantic multidecadal oscillation. J. Climate, 24, 55555570, doi:10.1175/2011JCLI4060.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, doi:10.1029/2001GL013552.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2003: Cloud resolving model of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154, doi:10.1175/JAS3453.1.

    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. S. Pritchard, and R. C. J. Somerville, 2014: The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 859882, doi:10.1002/2014MS000306.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J. Appl. Meteor., 6, 791802, doi:10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North Atlantic subtropical high western ridge and its implication to southeastern US summer precipitation. Climate Dyn., 39, 14011412, doi:10.1007/s00382-011-1214-y.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and Y. Deng, 2013: Summer rainfall variability over the Southeastern United States and its intensification in the 21st century as assessed by CMIP5 models. J. Geophys. Res. Atmos., 118, 340354, doi:10.1002/jgrd.50136.

    • Search Google Scholar
    • Export Citation
  • Miyasaka, T., and H. Nakamura, 2005: Structure and formation mechanisms of the Northern Hemisphere summertime subtropical highs. J. Climate, 18, 50465065, doi:10.1175/JCLI3599.1.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Nemias, J., 1952: The annual course of month-to-month persistence in climatic anomalies. Bull. Amer. Meteor. Soc., 33, 279285.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moening, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO> 2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. Doblas-Reyes, A. Weisheimer, and M. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, doi:10.1175/BAMS-89-4-459.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and R. C. J. Somerville, 2009: Assessing the diurnal cycle of precipitation in a multi-scale climate model. J. Adv. Model. Earth Syst., 1, 12, doi:10.3894/JAMES.2009.1.12.

    • Search Google Scholar
    • Export Citation
  • Seager, R., A. Tzanova, and J. Nakamura, 2009: Drought in the southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. J. Climate, 22, 50215045, doi:10.1175/2009JCLI2683.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J. O., S. P. De Szoeke, and S.-P. Xie, 2007: The Central American midsummer drought: Regional aspects and large-scale forcing. J. Climate, 20, 48534873, doi:10.1175/JCLI4261.1.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and L. Xu, 2014: Climate simulations and projections with a super-parameterized climate model. Environ. Modell. Software, 60, 134152, doi:10.1016/j.envsoft.2014.06.013.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and G. Wang, 2012: The complexity of using a feedback parameter to quantify the soil moisture–precipitation relationship. J. Geophys. Res., 117, D11113, doi:10.1029/2011JD017173.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., C. E. Birch, D. J. Parker, N. Dixon, F. Guichard, G. Nikulin, and G. S. Lister, 2013: Modeling soil moisture-precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterization. Geophys. Res. Lett., 40, 62136218, doi:10.1002/2013GL058511.

    • Search Google Scholar
    • Export Citation
  • Thibeault, J. M., and A. Seth, 2014: A framework for evaluating model credibility for warm-season precipitation in northeastern North America: A case study of CMIP5 simulations and projections. J. Climate, 27, 493510, doi:10.1175/JCLI-D-12-00846.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., R. Fu, A. Kumar, and W. Li, 2010a: Intensification of summer rainfall variability in the southeastern United States during recent decades. J. Hydrometeor., 11, 10071018, doi:10.1175/2010JHM1229.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, M. Suarez, and R. Koster, 2010b: The physical mechanisms by which the leading patterns of SST variability impact U.S. precipitation. J. Climate, 23, 18151836, doi:10.1175/2009JCLI3188.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., L. Xu, and C. Stan, 2014: Projections of the tropical Atlantic vertical wind shear and its relationship with ENSO in SP-CCSM4. J. Climate, 27, 83428356, doi:10.1175/JCLI-D-14-00002.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 71 5
PDF Downloads 119 47 1