The Melting Arctic and Midlatitude Weather Patterns: Are They Connected?

James Overland NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by James Overland in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. Francis Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Jennifer A. Francis in
Current site
Google Scholar
PubMed
Close
,
Richard Hall Department of Geography, University of Sheffield, Sheffield, United Kingdom

Search for other papers by Richard Hall in
Current site
Google Scholar
PubMed
Close
,
Edward Hanna Department of Geography, University of Sheffield, Sheffield, United Kingdom

Search for other papers by Edward Hanna in
Current site
Google Scholar
PubMed
Close
,
Seong-Joong Kim Korea Polar Research Institute, Incheon, South Korea

Search for other papers by Seong-Joong Kim in
Current site
Google Scholar
PubMed
Close
, and
Timo Vihma Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Timo Vihma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The potential of recent Arctic changes to influence hemispheric weather is a complex and controversial topic with considerable uncertainty, as time series of potential linkages are short (<10 yr) and understanding involves the relative contribution of direct forcing by Arctic changes on a chaotic climatic system. A way forward is through further investigation of atmospheric dynamic mechanisms. During several exceptionally warm Arctic winters since 2007, sea ice loss in the Barents and Kara Seas initiated eastward-propagating wave trains of high and low pressure. Anomalous high pressure east of the Ural Mountains advected Arctic air over central and eastern Asia, resulting in persistent cold spells. Blocking near Greenland related to low-level temperature anomalies led to northerly flow into eastern North America, inducing persistent cold periods. Potential Arctic connections in Europe are less clear. Variability in the North Pacific can reinforce downstream Arctic changes, and Arctic amplification can accentuate the impact of Pacific variability. The authors emphasize multiple linkage mechanisms that are regional, episodic, and based on amplification of existing jet stream wave patterns, which are the result of a combination of internal variability, lower-tropospheric temperature anomalies, and midlatitude teleconnections. The quantitative impact of Arctic change on midlatitude weather may not be resolved within the foreseeable future, yet new studies of the changing Arctic and subarctic low-frequency dynamics, together with additional Arctic observations, can contribute to improved skill in extended-range forecasts, as planned by the WMO Polar Prediction Project (PPP).

Denotes Open Access content.

Pacific Marine Environmental Laboratory Contribution Number 4037.

Corresponding author address: James Overland, NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115. E-mail: james.e.overland@noaa.gov

Abstract

The potential of recent Arctic changes to influence hemispheric weather is a complex and controversial topic with considerable uncertainty, as time series of potential linkages are short (<10 yr) and understanding involves the relative contribution of direct forcing by Arctic changes on a chaotic climatic system. A way forward is through further investigation of atmospheric dynamic mechanisms. During several exceptionally warm Arctic winters since 2007, sea ice loss in the Barents and Kara Seas initiated eastward-propagating wave trains of high and low pressure. Anomalous high pressure east of the Ural Mountains advected Arctic air over central and eastern Asia, resulting in persistent cold spells. Blocking near Greenland related to low-level temperature anomalies led to northerly flow into eastern North America, inducing persistent cold periods. Potential Arctic connections in Europe are less clear. Variability in the North Pacific can reinforce downstream Arctic changes, and Arctic amplification can accentuate the impact of Pacific variability. The authors emphasize multiple linkage mechanisms that are regional, episodic, and based on amplification of existing jet stream wave patterns, which are the result of a combination of internal variability, lower-tropospheric temperature anomalies, and midlatitude teleconnections. The quantitative impact of Arctic change on midlatitude weather may not be resolved within the foreseeable future, yet new studies of the changing Arctic and subarctic low-frequency dynamics, together with additional Arctic observations, can contribute to improved skill in extended-range forecasts, as planned by the WMO Polar Prediction Project (PPP).

Denotes Open Access content.

Pacific Marine Environmental Laboratory Contribution Number 4037.

Corresponding author address: James Overland, NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115. E-mail: james.e.overland@noaa.gov
Save
  • Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890–905, doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 4728–4733, doi:10.1002/grl.50880.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet- stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277–286, doi:10.1002/wcc.337.

  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, and M. M. Joshi, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 4083–4096, doi:10.1175/2009JCLI2717.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and K. Hamilton, 2008: QBO influence on extratropical predictive skill. Climate Dyn., 31, 987–1000, doi:10.1007/s00382-008-0379-5.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., W. R. Huang, and J. Yoon, 2004: Interannual variation of the East Asian cold surge activity. J. Climate, 17, 401–413, doi:10.1175/1520-0442(2004)017<0401:IVOTEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., and K. Caldeira, 2015: Atmospheric impacts of sea ice decline in CO2 induced global warming. Climate Dyn., 44, 1173–1186, doi:10.1007/s00382-015-2489-1.

    • Search Google Scholar
    • Export Citation
  • Davini, P., 2013: Atmospheric blocking and winter mid-latitude climate variability. Ph.D. thesis. Università Ca’ Foscari Venezia, 141 pp. [Available online at http://hdl.handle.net/10579/2241.]

  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012a: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 6496–6509, doi:10.1175/JCLI-D-12-00032.1.

    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, R. Neale, and J. Tribbia, 2012b: Coupling between Greenland blocking and the North Atlantic Oscillation pattern. Geophys. Res. Lett., 39, L14701, doi:10.1029/2012GL052315.

    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, P. G. Fogli, E. Manzini, S. Gualdi, and A. Navarra, 2014: European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Climate Dyn., 43, 71–85, doi:10.1007/s00382-013-1873-y.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333–351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209–212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., 2008: Linking weather and climate. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, American Meteorological Society, 297–348.

  • Duarte, C., T. Lenton, P. Wadhams, and P. Wassmann, 2012: Abrupt climate change in the Arctic. Nat. Climate Change, 2, 60–62, doi:10.1038/nclimate1386.

    • Search Google Scholar
    • Export Citation
  • Fang, Z.-F., 2004: Statistical relationship between the Northern Hemisphere sea ice and atmospheric circulation during wintertime. Observation, Theory and Modeling of Atmospheric Variability, X. Zhu, Ed., World Scientific, 131–141.

  • Feldstein, S. B., and S. Lee, 2014: Intraseasonal and interdecadal jet shifts in the Northern Hemisphere: The role of warm pool tropical convection and sea ice. J. Climate, 27, 6497–6518, doi:10.1175/JCLI-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., S.-W. Wang, and J.-H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 2073–2076, doi:10.1029/2000GL012311.

    • Search Google Scholar
    • Export Citation
  • Hall, R., R. Erdélyi, E. Hanna, J. M. Jones, and A. A. Scaife, 2015: Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol., doi:10.1002/joc.4121, in press.

    • Search Google Scholar
    • Export Citation
  • Hamilton, L. C., and M. Lemcke-Stampone, 2014: Arctic warming and your weather: Public belief in the connection. Int. J. Climatol., 34, 1723–1728, doi:10.1002/joc.3796.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. M. Jones, J. Cappelen, S. H. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2013: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., 33, 862–880, doi:10.1002/joc.3475.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 1022–1037, doi:10.1002/joc.3743.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. E. Cropper, P. D. Jones, A. A. Scaife, and R. Allan, 2015: Recent seasonal asymmetric in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index. Int. J. Climatol., doi:10.1002/joc.4157, in press.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 1894–1902. doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 507 pp.

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hori, M. E., J. Inoue, T. Kikuchi, M. Honda, and Y. Tachibana, 2011: Recurrence of intraseasonal cold air outbreak during the 2009/2010 winter in Japan and its ties to the atmospheric condition over the Barents-Kara Sea. SOLA, 7, 25–28, doi:10.2151/sola.2011-007.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., A. A. Scaife, J. R. Knight, J. C. Manners, N. J. Dunstone, L. J. Gray, and J. D. Haigh, 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, doi:10.1038/ngeo1282.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 2561–2568, doi:10.1175/JCLI-D-11-00449.1.

    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, doi:10.3402/tellusa.v64i0.11595.

    • Search Google Scholar
    • Export Citation
  • Jeffries, M. O., J. E. Overland, and D. K. Perovich, 2013: The Arctic shifts to a new normal. Phys. Today, 66, 35–40, doi:10.1063/PT.3.2147.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., and C.-H. Ho, 2005: Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, doi:10.1029/2005GL023024.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden–Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104, doi:10.1029/2004JD005408.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., T. Ou, H. W. Linderholm, B.-M. Kim, S.-J. Kim, J.-S. Kug, and D. Chen, 2011: Recent recovery of the Siberian high intensity. J. Geophys. Res., 116, D23102, doi:10.1029/2011JD015904.

    • Search Google Scholar
    • Export Citation
  • Jung, T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett., 41, 3676–3680, doi:10.1002/2014GL059961.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katili, J. A., 1971: A review of the geotectonic theories and tectonic maps of Indonesia. Earth-Sci. Rev., 7, 143–163, doi:10.1016/0012-8252(71)90006-7.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., C.-C. Hong, and H.-H. Hsu, 2015: Compounding effects of warm SST and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 1612–1618, doi:10.1002/2014GL062956.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269–283, doi:10.5194/tc-9-269-2015.

    • Search Google Scholar
    • Export Citation
  • Liptak, J., and C. Strong, 2014: The winter atmospheric response to sea ice anomalies in the Barents Sea. J. Climate, 27, 914–924, doi:10.1175/JCLI-D-13-00186.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, T., C. Murphy, R. L. Wilby, and S. Harrigan, 2014: Stormiest winter on record for Ireland and UK. Nat. Climate Change, 4, 738–740, doi:10.1038/nclimate2336.

    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869–873, doi:10.1038/ngeo2277.

    • Search Google Scholar
    • Export Citation
  • Nakanowatari, N., K. Sato, and J. Inoue, 2014: Predictability of the Barents Sea ice in early winter: remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. J. Climate, 27, 8884–8901, doi:10.1175/JCLI-D-14-00125.1.

    • Search Google Scholar
    • Export Citation
  • National Academy of Sciences, 2014: Linkages between Arctic Warming and Mid-latitude Weather Patterns. The National Academies Press, 83 pp. [Available online at http://www.nap.edu/catalog/18727/linkages-between-arctic-warming-and-midlatitude-weather-patterns.]

  • Orsolini, Y. J., R. Senan, R. E. Benestad, and A. Melsom, 2012: Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dyn., 38, 2437–2448, doi:10.1007/s00382-011-1169-z.

    • Search Google Scholar
    • Export Citation
  • Otto, F. E. L., N. Massey, G. vanOlenborgh, R. Jones, and M. Allen, 2012: Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett., 39, L04702, doi:10.1029/2011GL050422.

    • Search Google Scholar
    • Export Citation
  • Outten, S. D., and I. Esau, 2012: A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change, 110, 1069–1075, doi:10.1007/s10584-011-0334-z.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 1–9, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, and S. Salo, 2008: The recent Arctic warm period. Tellus, 60A, 589–597, doi:10.1111/j.1600-0870.2008.00327.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, K. R. Wood, D. B. Percival, and N. A. Bond, 2012: Recent Bering Sea warm and cold events in a 95-year context. Deep-Sea Res. II, 65–70, 6–13, doi:10.1016/j.dsr2.2012.02.013.

  • Overland, J. E., M. Wang, J. E. Walsh, and J. C. Stroeve, 2014: Future Arctic climate changes: Adaptation and mitigation timescales. Earth’s Future, 2, 68–74, doi:10.1002/2013EF000162.

    • Search Google Scholar
    • Export Citation
  • Park, T.-W., J.-H. Jeong, C.-H. Ho, and S.-J. Kim, 2008: Characteristics of atmospheric circulation associated with cold surge occurrences in East Asia: A case study during 2005/06 winter. Adv. Atmos. Sci., 25, 791–804, doi:10.1007/s00376-008-0791-0.

    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic and cold surges over East Asia. J. Climate, 24, 68–83, doi:10.1175/2010JCLI3529.1.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi:10.1088/1748-9326/9/3/034018.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., M. Hoerling, and R. Dole, 2015: Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Climate, 28, 2154–2167.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Rajewicz, J., and S. J. Marshall, 2014: Variability and trends in anticyclonic circulation over the Greenland ice sheet, 1948–2013. Geophys. Res. Lett., 41, 2842–2850, doi:10.1002/2014GL059255.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 1195–1202, doi:10.1126/science.222.4629.1195.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Santos, J. A., T. Woollings, and J. G. Pinto, 2013: Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream? Mon. Wea. Rev., 141, 3626–3640, doi:10.1175/MWR-D-13-00024.1.

    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 084009, doi:10.1088/1748-9326/9/8/084009.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577–582, doi:10.1038/nclimate2268.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959–964, doi:10.1002/grl.50174.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704–709, doi:10.1038/nclimate2271.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I. A., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937–943, doi:10.1007/s00382-008-0463-x.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and P. Govekar, 2014: What are the physical links between Arctic sea ice loss and Eurasian winter climate? Environ. Res. Lett., 9, 101003, doi:10.1088/1748-9326/9/10/101003.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., and Coauthors, 2014: The recent storms and floods in the UK. Met. Office Rep., 28 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/n/i/Recent_Storms_Briefing_Final_07023.pdf.]

  • Son, H.-Y., W. Park, J.-H. Jeong, S.-W. Yeh, B.-M. Kim, M. Kwon, and J.-S. Kug, 2012: Nonlinear impact of the Arctic Oscillation on extratropical surface air temperature. J. Geophys. Res., 117, D19102, doi:10.1029/2012JD018090.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., Y. Tachibana, and K. Iwamoto, 2008: Influences of large-scale atmospheric circulation and local sea surface temperature on convective activity over the Sea of Japan in December. SOLA, 4, 113–116, doi:10.2151/sola.2008-029.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005a: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 4423–4440, doi:10.1175/JAS3629.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005b: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 4441–4449, doi:10.1175/JAS3628.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89, doi:10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and E. P. Gerber, 2008: Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dyn. Atmos. Oceans, 44, 184–212, doi:10.1016/j.dynatmoce.2007.04.003.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 1175–1214, doi:10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729–730, doi:10.1126/science.343.6172.729.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 52–63, doi:10.1016/j.gloplacha.2014.03.003.

    • Search Google Scholar
    • Export Citation
  • Woo, S.-H., B.-M. Kim, J.-H. Jeong, S.-J. Kim, and G.-H. Lim, 2012: Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979–2011). J. Geophys. Res., 117, D18117, doi:10.1029/2011JD016929.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609–626, doi:10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856–868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Harvey, and G. Masato, 2014: Arctic warming, atmospheric warming and cold European winters in CMIP5 models. Environ. Res. Lett., 9, 014002, doi:10.1088/1748-9326/9/1/014002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5205 910 107
PDF Downloads 2704 485 29