Sea-Breeze Dynamics and Convection Initiation: The Influence of Convective Parameterization in Weather and Climate Model Biases

Cathryn E. Birch * Met Office@Leeds, University of Leeds, Leeds, United Kingdom

Search for other papers by Cathryn E. Birch in
Current site
Google Scholar
PubMed
Close
,
Malcolm J. Roberts Met Office, Exeter, United Kingdom

Search for other papers by Malcolm J. Roberts in
Current site
Google Scholar
PubMed
Close
,
Luis Garcia-Carreras School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Luis Garcia-Carreras in
Current site
Google Scholar
PubMed
Close
,
Duncan Ackerley School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Duncan Ackerley in
Current site
Google Scholar
PubMed
Close
,
Michael J. Reeder School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Michael J. Reeder in
Current site
Google Scholar
PubMed
Close
,
Adrian P. Lock Met Office, Exeter, United Kingdom

Search for other papers by Adrian P. Lock in
Current site
Google Scholar
PubMed
Close
, and
Reinhard Schiemann ** National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Reinhard Schiemann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.

Corresponding author address: Cathryn E. Birch, School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom. E-mail: cathryn.birch@metoffice.gov.uk

Abstract

There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.

Corresponding author address: Cathryn E. Birch, School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom. E-mail: cathryn.birch@metoffice.gov.uk
Save
  • Ackerley, D., G. J. Berry, C. Jakob, and M. J. Reeder, 2014: The roles of diurnal forcing and large-scale moisture transport for initiating rain over northwest Australia in a GCM. Quart. J. Roy. Meteor. Soc., 140, 25152526, doi:10.1002/qj.2316.

    • Search Google Scholar
    • Export Citation
  • Ackerley, D., G. L. Berry, C. Jakob, M. J. Reeder, and J. Schwendike, 2015: Summertime precipitation over northern Australia in AMIP simulations from CMIP5. Quart. J. Roy. Meteor. Soc., 141, 1753–1768, doi:10.1002/qj.2476.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., and M. J. Reeder, 2013: Wave-cloud lines over northwest Australia. Quart. J. Roy. Meteor. Soc., 139, 13111326, doi:10.1002/qj.2043.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., J. H. Marsham, D. J. Parker, and C. M. Taylor, 2014a: The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys. Res. Lett., 41, 47694776, doi:10.1002/2014GL060493.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014b: A seamless assessment of the role of convection in the water cycle of the West African Monsoon. J. Geophys. Res. Atmos., 119, 28902912, doi:10.1002/2013JD020887.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, doi:10.1175/MWR-D-13-00229.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., X. Lin, and K.-L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744, doi:10.1007/s00382-007-0260-y.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and S. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, doi:10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., M. J. Best, and P. M. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, 30 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/9/j/HCTN_30.pdf.]

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, and J. H. Marsham, 2011: What is the mechanism for the modification of convective cloud distributions by land surface–induced flows? J. Atmos. Sci., 68, 619634, doi:10.1175/2010JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., S. G. Llewellyn Smith, and N. M. Statom, 2005: Global observations of the land breeze. Geophys. Res. Lett., 32, L05605, doi:10.1029/2004GL022139.

    • Search Google Scholar
    • Export Citation
  • Goler, R. A., and M. J. Reeder, 2004: The generation of the morning glory. J. Atmos. Sci., 61, 13601376, doi:10.1175/1520-0469(2004)061<1360:TGOTMG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goler, R. A., M. J. Reeder, R. K. Smith, S. Arnup, H. Richter, T. Keenan, and P. May, 2006: Low-level convergence lines over northeastern Australia. Part I: The north Australian cloud line. Mon. Wea. Rev., 134, 30923108, doi:10.1175/MWR3239.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grose, M. R., and Coauthors, 2014: Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol., 34, 33823399, doi:10.1002/joc.3916.

    • Search Google Scholar
    • Export Citation
  • Habib, E., M. Elsaadani, and A. T. Haile, 2012: Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile basin. J. Appl. Meteor. Climatol., 51, 21052121, doi:10.1175/JAMC-D-11-0252.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47, 22272240, doi:10.1175/1520-0469(1990)047<2227:ACSOOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2012: Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Quart. J. Roy. Meteor. Soc., 138, 16921708, doi:10.1002/qj.1903.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Irving, D. B., and Coauthors, 2011: Evaluating global climate models for the Pacific island region. Climate Res., 49, 169187, doi:10.3354/cr01028.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. L., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, doi:10.1175/JCLI-D-11-00562.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, B. N., V. Bennett, J. Churchill, M. Juckes, P. Kershaw, P. Oliver, M. Pritchard, and A. Stephens, 2012: The JASMIN super-data-cluster, 18 pp. [Available online at http://arxiv.org/abs/1204.3553.]

  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, doi:10.1002/qj.809.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., N. Dixon, L. Garcia-Carreras, G. M. S. Lister, D. J. Parker, P. Knippertz, and C. Birch, 2013: The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys. Res. Lett., 40, 18431849, doi:10.1002/grl.50347.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 12741301, doi:10.1175/JCLI3636.1.

    • Search Google Scholar
    • Export Citation
  • Martin, M., E. Fiedler, J. Roberts-Jones, and A. McLaren, 2015: Global ocean OSTIA sea surface temperature and sea ice analysis. Copernicus Marine Environment Monitoring Service, accessed 14 November 2012. [Available online at http://marine.copernicus.eu/web/69-interactive-catalogue.php?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001.]

  • Matthews, A. J., G. Pickup, S. C. Peatman, P. Clews, and J. Martin, 2013: The effect of the Madden–Julian Oscillation on station rainfall and river level in the Fly River system, Papua New Guinea. J. Geophys. Res. Atmos., 118, 10 92610 935, doi:10.1002/jgrd.50865.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Mizielinski, M. S., and Coauthors, 2014: High resolution global climate modelling; the UPSCALE project, a large simulation campaign. Geosci. Model Dev., 7, 563591, doi:10.5194/gmdd-7-563-2014.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, doi:10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NASA, 2015: Tropical Rainfall Measuring Mission 3B42 precipitation product, version 7. Goddard Earth Sciences Data and Information Service Center, National Aeronautics and Space Administration, accessed 28 August 2014. [Available online at http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_3B42_readme.shtml.]

  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2015: CPC Morphing Technique precipitation product, version 1. Climate Prediction Centre, National Oceanic and Atmospheric Administration/National Weather Service, accessed 5 December 2013. [Available online at http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html.]

  • Noonan, J. A., and R. K. Smith, 1986: Sea-breeze circulations over Cape York Peninsula and the generation of Gulf of Carpentaria cloud line disturbances. J. Atmos. Sci., 43, 16791693, doi:10.1175/1520-0469(1986)043<1679:SBCOCY>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. T. Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the ‘grey zone.’ Quart. J. Roy. Meteor. Soc., 140, 491499, doi:10.1002/qj.2145.

    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, doi:10.1002/qj.2161.

    • Search Google Scholar
    • Export Citation
  • Qian, J., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, doi:10.1175/2007JAS2422.1.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, doi:10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., R. K. Smith, D. J. Low, S. J. Arnup, L. C. Muir, and G. Thomsen, 2013: Diurnally forced convergence lines in the Australian tropics. Quart. J. Roy. Meteor. Soc., 139, 12831297, doi:10.1002/qj.2021.

    • Search Google Scholar
    • Export Citation
  • Romilly, T. G., and M. Gebremichael, 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514, doi:10.5194/hess-15-1505-2011.

    • Search Google Scholar
    • Export Citation
  • Rybka, H., and H. Tost, 2014: Uncertainties in future climate predictions due to convection parameterisations. Atmos. Chem. Phys., 14, 55615576, doi:10.5194/acp-14-5561-2014.

    • Search Google Scholar
    • Export Citation
  • Saito, K., T. Keenan, G. Holland, and K. Puri, 2001: Numerical simulation of the diurnal evolution of tropical island convection over the Maritime Continent. Mon. Wea. Rev., 129, 378400, doi:10.1175/1520-0493(2001)129<0378:NSOTDE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. J. Reeder, P. May, and H. Richter, 2006: Low-level convergence lines over northeastern Australia. Part II: Southerly disturbances. Mon. Wea. Rev., 134, 31093124, doi:10.1175/MWR3240.1.

    • Search Google Scholar
    • Export Citation
  • Spengler, T., and R. K. Smith, 2008: The dynamics of heat lows over flat terrain. Quart. J. Roy. Meteor. Soc., 134, 21572172, doi:10.1002/qj.342.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, doi:10.1175/JCLI3672.1.

  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430–433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev., 7, 361386, doi:10.5194/gmd-7-361-2014.

    • Search Google Scholar
    • Export Citation
  • Wapler, K., and T. Lane, 2012: A case of offshore convective initiation by interacting land breezes near Darwin, Australia. Meteor. Atmos. Phys., 115, 123137, doi:10.1007/s00703-011-0180-6.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK meteorological office unified model. Quart. J. Roy. Meteor. Soc., 125, 16071636, doi:10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008a: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, doi:10.1002/qj.333.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, C. J. Morcrette, and A. Bodas-Salcedo, 2008b: PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Quart. J. Roy. Meteor. Soc., 134, 21092125, doi:10.1002/qj.332.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1549 371 62
PDF Downloads 1152 313 49