How Well Do the CMIP5 Models Simulate the Antarctic Atmospheric Energy Budget?

Michael Previdi Lamont–Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Michael Previdi in
Current site
Google Scholar
PubMed
Close
,
Karen L. Smith Lamont–Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Karen L. Smith in
Current site
Google Scholar
PubMed
Close
, and
Lorenzo M. Polvani Lamont–Doherty Earth Observatory of Columbia University, Palisades, and Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors evaluate 23 coupled atmosphere–ocean general circulation models from phase 5 of CMIP (CMIP5) in terms of their ability to simulate the observed climatological mean energy budget of the Antarctic atmosphere. While the models are shown to capture the gross features of the energy budget well [e.g., the observed two-way balance between the top-of-atmosphere (TOA) net radiation and horizontal convergence of atmospheric energy transport], the simulated TOA absorbed shortwave (SW) radiation is too large during austral summer. In the multimodel mean, this excessive absorption reaches approximately 10 W m−2, with even larger biases (up to 25–30 W m−2) in individual models. Previous studies have identified similar climate model biases in the TOA net SW radiation at Southern Hemisphere midlatitudes and have attributed these biases to errors in the simulated cloud cover. Over the Antarctic, though, model cloud errors are of secondary importance, and biases in the simulated TOA net SW flux are instead driven mainly by biases in the clear-sky SW reflection. The latter are likely related in part to the models’ underestimation of the observed annual minimum in Antarctic sea ice extent, thus underscoring the importance of sea ice in the Antarctic energy budget. Finally, substantial differences in the climatological surface energy fluxes between existing observational datasets preclude any meaningful assessment of model skill in simulating these fluxes.

Corresponding author address: Dr. Michael Previdi, Lamont–Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: mprevidi@ldeo.columbia.edu

Abstract

The authors evaluate 23 coupled atmosphere–ocean general circulation models from phase 5 of CMIP (CMIP5) in terms of their ability to simulate the observed climatological mean energy budget of the Antarctic atmosphere. While the models are shown to capture the gross features of the energy budget well [e.g., the observed two-way balance between the top-of-atmosphere (TOA) net radiation and horizontal convergence of atmospheric energy transport], the simulated TOA absorbed shortwave (SW) radiation is too large during austral summer. In the multimodel mean, this excessive absorption reaches approximately 10 W m−2, with even larger biases (up to 25–30 W m−2) in individual models. Previous studies have identified similar climate model biases in the TOA net SW radiation at Southern Hemisphere midlatitudes and have attributed these biases to errors in the simulated cloud cover. Over the Antarctic, though, model cloud errors are of secondary importance, and biases in the simulated TOA net SW flux are instead driven mainly by biases in the clear-sky SW reflection. The latter are likely related in part to the models’ underestimation of the observed annual minimum in Antarctic sea ice extent, thus underscoring the importance of sea ice in the Antarctic energy budget. Finally, substantial differences in the climatological surface energy fluxes between existing observational datasets preclude any meaningful assessment of model skill in simulating these fluxes.

Corresponding author address: Dr. Michael Previdi, Lamont–Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: mprevidi@ldeo.columbia.edu
Save
  • Barnes, E. A., and D. L. Hartmann, 2010: Testing a theory for the effect of latitude on the persistence of eddy-driven jets using CMIP3 simulations. Geophys. Res. Lett., 37, L15801, doi:10.1029/2010GL044144.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., E. Shuckburgh, J. B. Sallee, Z. Wang, A. J. S. Meijers, N. Bruneau, T. Phillips, and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, doi:10.1002/jgrd.50153.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y. T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246260, doi:10.1175/JCLI-D-11-00707.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fan, T., C. Deser, and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett., 41, 24192426, doi:10.1002/2014GL059239.

    • Search Google Scholar
    • Export Citation
  • Gagné, M.-È., N. P. Gillett, and J. C. Fyfe, 2015: Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophys. Res. Lett., 42, 9095, doi:10.1002/2014GL062231.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: Southern Hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, doi:10.1175/JCLI-D-14-00113.1.

    • Search Google Scholar
    • Export Citation
  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2013: Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett., 40, 14091414, doi:10.1002/grl.50287.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., R. W. Grumbine, D. H. Bromwich, and R. I. Cullather, 1999: Surface energy balance of the NCEP MRF and NCEP–NCAR reanalysis in Antarctic latitudes during FROST. Wea. Forecasting, 14, 851866, doi:10.1175/1520-0434(1999)014<0851:SEBOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, doi:10.1175/JCLI-D-12-00813.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S. P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, doi:10.1002/grl.50578.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., K. L. Smith, and L. M. Polvani, 2013: The Antarctic atmospheric energy budget. Part I: Climatology and intraseasonal-to-interannual variability. J. Climate, 26, 64066418, doi:10.1175/JCLI-D-12-00640.1.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, doi:10.1038/ngeo2105.

  • Smith, K. L., M. Previdi, and L. M. Polvani, 2013: The Antarctic atmospheric energy budget. Part II: The effect of ozone depletion and its projected recovery. J. Climate, 26, 97299744, doi:10.1175/JCLI-D-13-00173.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, doi:10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, doi:10.1175/JCLI-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 445 103 8
PDF Downloads 153 36 3