Seasonality in Prediction Skill and Predictable Pattern of Tropical Indian Ocean SST

Jieshun Zhu Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia, and Climate Prediction Center, National Centers for Environmental Prediction/NOAA, College Park, and Innovim, Greenbelt, Maryland

Search for other papers by Jieshun Zhu in
Current site
Google Scholar
PubMed
Close
,
Bohua Huang Center for Ocean–Land–Atmosphere Studies, and Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Bohua Huang in
Current site
Google Scholar
PubMed
Close
,
Arun Kumar Climate Prediction Center, National Centers for Environmental Prediction/NOAA, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
, and
James L. Kinter III Center for Ocean–Land–Atmosphere Studies, and Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by James L. Kinter III in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonality of sea surface temperature (SST) predictions in the tropical Indian Ocean (TIO) was investigated using hindcasts (1982–2009) made with the NCEP Climate Forecast System version 2 (CFSv2). CFSv2 produced useful predictions of the TIO SST with lead times up to several months. A substantial component of this skill was attributable to signals other than the Indian Ocean dipole (IOD). The prediction skill of the IOD index, defined as the difference between the SST anomaly (SSTA) averaged over 10°S–0°, 90°–110°E and 10°S–10°N, 50°–70°E, had strong seasonality, with high scores in the boreal autumn. In spite of skill in predicting its two poles with longer leads, CFSv2 did not have skill significantly better than persistence in predicting IOD. This was partly because the seasonal nature of IOD intrinsically limits its predictability.

The seasonality of the predictable patterns of the TIO SST was further explored by applying the maximum signal-to-noise (MSN) empirical orthogonal function (EOF) method to the predicted SSTA in March and October, respectively. The most predictable pattern in spring was the TIO basin warming, which is closely associated with El Niño. The basin mode, including its associated atmospheric anomalies, can be predicted at least 9 months ahead, even though some biases were evident. On the other hand, the most predictable pattern in fall was characterized by the IOD mode. This mode and its associated atmospheric variations can be skillfully predicted only 1–2 seasons ahead. Statistically, the predictable IOD mode coexists with El Niño; however, the 1994 event in a non-ENSO year (at least not a canonical ENSO year) can also be predicted at least 3 months ahead by CFSv2.

Corresponding author address: Dr. Jieshun Zhu, Climate Prediction Center, 5830 University Research Court, College Park, MD 20740. E-mail: jieshun.zhu@noaa.gov

Abstract

Seasonality of sea surface temperature (SST) predictions in the tropical Indian Ocean (TIO) was investigated using hindcasts (1982–2009) made with the NCEP Climate Forecast System version 2 (CFSv2). CFSv2 produced useful predictions of the TIO SST with lead times up to several months. A substantial component of this skill was attributable to signals other than the Indian Ocean dipole (IOD). The prediction skill of the IOD index, defined as the difference between the SST anomaly (SSTA) averaged over 10°S–0°, 90°–110°E and 10°S–10°N, 50°–70°E, had strong seasonality, with high scores in the boreal autumn. In spite of skill in predicting its two poles with longer leads, CFSv2 did not have skill significantly better than persistence in predicting IOD. This was partly because the seasonal nature of IOD intrinsically limits its predictability.

The seasonality of the predictable patterns of the TIO SST was further explored by applying the maximum signal-to-noise (MSN) empirical orthogonal function (EOF) method to the predicted SSTA in March and October, respectively. The most predictable pattern in spring was the TIO basin warming, which is closely associated with El Niño. The basin mode, including its associated atmospheric anomalies, can be predicted at least 9 months ahead, even though some biases were evident. On the other hand, the most predictable pattern in fall was characterized by the IOD mode. This mode and its associated atmospheric variations can be skillfully predicted only 1–2 seasons ahead. Statistically, the predictable IOD mode coexists with El Niño; however, the 1994 event in a non-ENSO year (at least not a canonical ENSO year) can also be predicted at least 3 months ahead by CFSv2.

Corresponding author address: Dr. Jieshun Zhu, Climate Prediction Center, 5830 University Research Court, College Park, MD 20740. E-mail: jieshun.zhu@noaa.gov
Save
  • Allen, M. R., and L. A. Smith, 1997: Optimal filtering in singular spectrum analysis. Phys. Lett., 234A, 419428, doi:10.1016/S0375-9601(97)00559-8.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., P. Liu, and S.-P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 41504167, doi:10.1175/JCLI3533.1.

    • Search Google Scholar
    • Export Citation
  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15, 13581368, doi:10.1175/1520-0442(2002)015<1358:ODVOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. V. Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanism for impacts on Australian rainfall. J. Climate, 24, 39103923, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecast of El Niño, Nature, 321, 827832, doi:10.1038/321827a0.

  • Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13, 21952216, doi:10.1175/1520-0442(2000)013<2195:TEOLSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, 99–109.

  • Chen, M., W. Wang, A. Kumar, H. Wang, and B. Jha, 2012: Ocean surface impacts on the seasonal precipitation over the tropical Indian Ocean. J. Climate, 25, 35663582, doi:10.1175/JCLI-D-11-00318.1.

    • Search Google Scholar
    • Export Citation
  • Clark, C., P. Webster, and J. Cole, 2003: Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. J. Climate, 16, 548554, doi:10.1175/1520-0442(2003)016<0548:IVOTRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and B. Wu, 2014: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dyn., 42, 203217, doi:10.1007/s00382-013-1722-z.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and S. P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Feng, R., W. Duan, and M. Mu, 2014: The “winter predictability barrier” for IOD events and its error growth dynamics: Results from a fully coupled GCM. J. Geophys. Res. Oceans, 119, 86888708, doi:10.1002/2014JC010473.

    • Search Google Scholar
    • Export Citation
  • Guan, Y., J. Zhu, B. Huang, Z.-Z. Hu, and J. L. Kinter III, 2014: South Pacific Ocean dipole: A predictable mode on multiseasonal time scales. J. Climate, 27, 16481658, doi:10.1175/JCLI-D-13-00293.1.

    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Heller, 1977: Dynamics of climatic hazards in northeast Brazil. Quart. J. Roy. Meteor. Soc., 103, 7792, doi:10.1002/qj.49710343505.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, doi:10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2007: The predictive skill and the most predictable pattern in the tropical Atlantic: The effect of ENSO. Mon. Wea. Rev., 135, 17861806, doi:10.1175/MWR3393.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, W. Wang, J. Zhu, and C. Wen, 2013: Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dyn., 40, 27452756, doi:10.1007/s00382-012-1431-z.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and Y. Guan, 2014: Prediction skill of North Pacific variability in NCEP Climate Forecast System version 2: Impact of ENSO and beyond. J. Climate, 27, 42634272, doi:10.1175/JCLI-D-13-00633.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133152, doi:10.1007/s00382-004-0443-8.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, doi:10.1029/2001JC001278.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007a: Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical Pacific. J. Climate, 20, 29172936, doi:10.1175/JCLI4151.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007b: Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J. Climate, 20, 29372960, doi:10.1175/JCLI4169.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, and B. Jha, 2007: Evolution of model systematic errors in the tropical Atlantic basin from the NCEP coupled hindcasts. Climate Dyn., 28, 661682, doi:10.1007/s00382-006-0223-8.

    • Search Google Scholar
    • Export Citation
  • Ihara, C., Y. Kushnir, and M. A. Cane, 2008: Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J. Climate, 21, 20352046, doi:10.1175/2007JCLI1945.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on following year’s El Niño. Nat. Geosci., 3, 168172, doi:10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, J. Li, Y. Li, H. Hu, and Y. Lian, 2013: Variability of the Indian Ocean SST and its possible impact on summer western North Pacific anticyclone in the NCEP Climate Forecast System. Climate Dyn., 41, 21992212, doi:10.1007/s00382-013-1934-2.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, doi:10.1007/s00382-008-0397-3.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., I.-S. Kang, J.-Y. Lee, and J.-G. Jhun, 2004: A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophys. Res. Lett., 31, L09212, doi:10.1029/2003GL019209.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, and H. Wang, 2014: Attribution of SST variability in global oceans and the role of ENSO. Climate Dyn., 43, 209220, doi:10.1007/s00382-013-1865-y.

    • Search Google Scholar
    • Export Citation
  • Lamb, P. J., 1978: Large-scale tropical Atlantic surface circulation patterns associated with Subsaharan weather anomalies. Tellus, 30, 240251, doi:10.1111/j.2153-3490.1978.tb00839.x.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, doi:10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 44744497, doi:10.1175/JCLI3526.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, doi:10.1175/JCLI4132.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, doi:10.1029/2007GL032793.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, doi:10.1175/2009JCLI3104.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, and T. Yamagata, 2011: Impact of global ocean surface warming on seasonal-to-interannual climate prediction. J. Climate, 24, 16261646, doi:10.1175/2010JCLI3645.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, doi:10.1073/pnas.1210239109.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1989: Sea surface temperatures and Australian winter rainfall. J. Climate, 2, 965973, doi:10.1175/1520-0442(1989)002<0965:SSTAAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and H. S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6, 657676, doi:10.1175/1520-0442(1993)006<0657:SOOAAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole in the tropical Indian Ocean. Nature, 401, 360363.

  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Shi, L., H. H. Hendon, O. Alves, J.-J. Luo, M. Balmaseda, and D. Anderson, 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140, 38673884, doi:10.1175/MWR-D-12-00001.1.

    • Search Google Scholar
    • Export Citation
  • Song, Q., G. A. Vecchi, and A. J. Rosati, 2008: Predictability of the Indian Ocean sea surface temperature anomalies in the GFDL coupled model. Geophys. Res. Lett., 35, L02701, doi:10.1029/2007GL031966.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., M. A. Balmaseda, and A. Vidard, 2006: Tropical Atlantic SST prediction with coupled ocean–atmosphere GCMS. J. Climate, 19, 60476061, doi:10.1175/JCLI3947.1.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., S. P. Jewson, and D. P. Rowell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13, 32613284, doi:10.1175/1520-0442(2000)013<3261:TEOCVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell, 1999: The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J. Climate, 12, 25622584, doi:10.1175/1520-0442(1999)012<2562:TAROTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2005: Potential predictability of tropical Indian Ocean SST anomalies. Geophys. Res. Lett., 32, L24702, doi:10.1029/2005GL024169.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2007: Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: Potential predictability and barriers. J. Climate, 20, 33203343, doi:10.1175/JCLI4162.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asia teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, doi:10.1126/science.181.4096.262.

  • Xie, P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. Schott, and J. P. McCreary Jr., 2002: Structure and mechanism of South Indian Ocean climate variability. J. Climate, 15, 864878, doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, doi:10.1175/JCLI-D-12-00600.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and H. H. Hendon, 2009: Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quart. J. Roy. Meteor. Soc., 135, 337352, doi:10.1002/qj.370.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and J. Shukla, 2013: The role of air–sea coupling in seasonal prediction of Asian–Pacific summer monsoon rainfall. J. Climate, 26, 56895697, doi:10.1175/JCLI-D-13-00190.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, and M. A. Balmaseda, 2012a: An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Climate Dyn., 39, 10011020, doi:10.1007/s00382-011-1189-8.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, L. Marx, J. L. Kinter III, M. A. Balmaseda, R.-H. Zhang, and Z.-Z. Hu, 2012b: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, doi:10.1029/2012GL051503.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, M. A. Balmaseda, J. L. Kinter III, P. Peng, Z.-Z. Hu, and L. Marx, 2013a: Improved reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Climate Dyn., 41, 27852795, doi:10.1007/s00382-013-1965-8.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., G.-Q. Zhou, R.-H. Zhang, and Z. Sun, 2013b: Improving ENSO prediction in a hybrid coupled model with an embedded entrainment temperature parameterization. Int. J. Climatol., 33, 343355, doi:10.1002/joc.3426.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, R.-H. Zhang, Z.-Z. Hu, A. Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter III, 2014: Salinity anomaly as a trigger for ENSO events. Sci. Rep., 4, 6821, doi:10.1038/srep06821.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and Coauthors, 2015: ENSO prediction in Project Minerva: Sensitivity to atmospheric horizontal resolution and ensemble size. J. Climate, 28, 20802095, doi:10.1175/JCLI-D-14-00302.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 494 98 4
PDF Downloads 305 63 3