Separating Internal Variability from the Externally Forced Climate Response

Leela M. Frankcombe ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Leela M. Frankcombe in
Current site
Google Scholar
PubMed
Close
,
Matthew H. England ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
,
Michael E. Mann Department of Meteorology, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Michael E. Mann in
Current site
Google Scholar
PubMed
Close
, and
Byron A. Steinman Large Lakes Observatory, and Department of Earth and Environmental Sciences, University of Minnesota Duluth, Duluth, Minnesota

Search for other papers by Byron A. Steinman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Separating low-frequency internal variability of the climate system from the forced signal is essential to better understand anthropogenic climate change as well as internal climate variability. Here both synthetic time series and the historical simulations from phase 5 of CMIP (CMIP5) are used to examine several methods of performing this separation. Linear detrending, as is commonly used in studies of low-frequency climate variability, is found to introduce large biases in both amplitude and phase of the estimated internal variability. Using estimates of the forced signal obtained from ensembles of climate simulations can reduce these biases, particularly when the forced signal is scaled to match the historical time series of each ensemble member. These so-called scaling methods also provide estimates of model sensitivities to different types of external forcing. Applying the methods to observations of the Atlantic multidecadal oscillation leads to different estimates of the phase of this mode of variability in recent decades.

Corresponding author address: Leela M. Frankcombe, Climate Change Research Centre, Level 4 Mathews Bldg., University of New South Wales, Sydney, NSW 2052, Australia. E-mail: l.frankcombe@unsw.edu.au

Abstract

Separating low-frequency internal variability of the climate system from the forced signal is essential to better understand anthropogenic climate change as well as internal climate variability. Here both synthetic time series and the historical simulations from phase 5 of CMIP (CMIP5) are used to examine several methods of performing this separation. Linear detrending, as is commonly used in studies of low-frequency climate variability, is found to introduce large biases in both amplitude and phase of the estimated internal variability. Using estimates of the forced signal obtained from ensembles of climate simulations can reduce these biases, particularly when the forced signal is scaled to match the historical time series of each ensemble member. These so-called scaling methods also provide estimates of model sensitivities to different types of external forcing. Applying the methods to observations of the Atlantic multidecadal oscillation leads to different estimates of the phase of this mode of variability in recent decades.

Corresponding author address: Leela M. Frankcombe, Climate Change Research Centre, Level 4 Mathews Bldg., University of New South Wales, Sydney, NSW 2052, Australia. E-mail: l.frankcombe@unsw.edu.au
Save
  • Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419–434, doi:10.1007/s003820050291.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477–491, doi:10.1007/s00382-003-0313-9.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., C. D. Jones, and P. M. Cox, 2005: Strong present-day aerosol cooling implies a hot future. Nature, 435, 1187–1190, doi:10.1038/nature03671.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 1993–2011, doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1997: Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophys. Res. Lett., 24, 257–260, doi:10.1029/96GL03927.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222–227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf.]

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, and F. E. Kates, 1984: Worldwide marine temperature fluctuations 1856–1981. Nature, 310, 670–673, doi:10.1038/310670a0.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602–607, doi:10.1038/320602a0.

    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., S. McGregor, and M. H. England, 2015: Robustness of the modes of Indo-Pacific sea level variability. Climate Dyn., 45, 1281–1298, doi:10.1007/s00382-014-2377-0.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 3520–3544, doi:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Huber, M., U. Beyerle, and R. Knutti, 2014: Estimating climate sensitivity and future temperature in the presence of natural climate variability. Geophys. Res. Lett., 41, 2086–2092, doi:10.1002/2013GL058532.

    • Search Google Scholar
    • Export Citation
  • Huck, T., A. Colin de Verdière, and A. J. Weaver, 1999: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29, 865–892, doi:10.1175/1520-0485(1999)029<0865:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iwi, A. M., L. Hermanson, K. Haines, and R. T. Sutton, 2012: Mechanisms linking volcanic aerosols to the Atlantic meridional overturning circulation. J. Climate, 25, 3039–3051, doi:10.1175/2011JCLI4067.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 1984–1985, doi:10.1126/science.288.5473.1984.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141–157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., 2008: Smoothing of climate time series revisited. Geophys. Res. Lett., 35, L16708, doi:10.1029/2008GL034716.

  • Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res., 99, 25 819–25 833, doi:10.1029/94JD02396.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233–241, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., J. Park, and R. S. Bradley, 1995: Global interdecadal and century-scale climate oscillations during the past five centuries. Nature, 378, 266–270, doi:10.1038/378266a0.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, and S. K. Miller, 2014: On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett., 41, 3211–3219, doi:10.1002/2014GL059233.

    • Search Google Scholar
    • Export Citation
  • Menary, M., and A. Scaife, 2014: Naturally forced multidecadal variability of the Atlantic meridional overturning circulation. Climate Dyn., 42, 1347–1362, doi:10.1007/s00382-013-2028-x.

    • Search Google Scholar
    • Export Citation
  • OtterÃ¥, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688–694, doi:10.1038/ngeo955.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., G. C. Hegerl, M. E. Mann, S. F. B. Tett, and S. J. Phipps, 2013: Separating forced from chaotic climate variability of the past millennium. J. Climate, 26, 6954–6973, doi:10.1175/JCLI-D-12-00826.1.

    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988–991, doi:10.1126/science.1257856.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2003: Influence of the ocean on North Atlantic climate variability 1871–1999. J. Climate, 16, 3296–3313, doi:10.1175/1520-0442(2003)016<3296:IOTOON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., C. Timmreck, H. F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419–444, doi:10.1007/s00382-011-1167-1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 5772–5791, doi:10.1002/jgrc.20390.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 1135–1144, doi:10.1175/JAS-D-12-0331.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2455 655 63
PDF Downloads 1345 312 26