Seasonality and Predictability of the Indian Ocean Dipole Mode: ENSO Forcing and Internal Variability

Yun Yang * Physical Oceanography Laboratory, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
Joint Center for Global Studies, Beijing, China

Search for other papers by Yun Yang in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie * Physical Oceanography Laboratory, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
Lixin Wu * Physical Oceanography Laboratory, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
,
Yu Kosaka Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

Search for other papers by Yu Kosaka in
Current site
Google Scholar
PubMed
Close
,
Ngar-Cheung Lau ** Institute of Environment, Energy and Sustainability, Hong Kong, China
Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Ngar-Cheung Lau in
Current site
Google Scholar
PubMed
Close
, and
Gabriel A. Vecchi National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the relative contributions to the Indian Ocean dipole (IOD) mode of interannual variability from the El Niño–Southern Oscillation (ENSO) forcing and ocean–atmosphere feedbacks internal to the Indian Ocean. The ENSO forcing and internal variability is extracted by conducting a 10-member coupled simulation for 1950–2012 where sea surface temperature (SST) is restored to the observed anomalies over the tropical Pacific but interactive with the atmosphere over the rest of the World Ocean. In these experiments, the ensemble mean is due to ENSO forcing and the intermember difference arises from internal variability of the climate system independent of ENSO. These elements contribute one-third and two-thirds of the total IOD variance, respectively. Both types of IOD variability develop into an east–west dipole pattern because of Bjerknes feedback and peak in September–November. The ENSO forced and internal IOD modes differ in several important ways. The forced IOD mode develops in August with a broad meridional pattern and eventually evolves into the Indian Ocean basin mode, while the internal IOD mode grows earlier in June, is more confined to the equator, and decays rapidly after October. The internal IOD mode is more skewed than the ENSO forced response. The destructive interference of ENSO forcing and internal variability can explain early terminating IOD events, referred to as IOD-like perturbations that fail to grow during boreal summer. The results have implications for predictability. Internal variability, as represented by preseason sea surface height anomalies off Sumatra, contributes to predictability considerably. Including this indicator of internal variability, together with ENSO, improves the predictability of IOD.

Corresponding author address: Shang-Ping Xie, 9500 Gilman Drive, MC 206, La Jolla, CA 92093-0206. E-mail: sxie@ucsd.edu

Abstract

This study evaluates the relative contributions to the Indian Ocean dipole (IOD) mode of interannual variability from the El Niño–Southern Oscillation (ENSO) forcing and ocean–atmosphere feedbacks internal to the Indian Ocean. The ENSO forcing and internal variability is extracted by conducting a 10-member coupled simulation for 1950–2012 where sea surface temperature (SST) is restored to the observed anomalies over the tropical Pacific but interactive with the atmosphere over the rest of the World Ocean. In these experiments, the ensemble mean is due to ENSO forcing and the intermember difference arises from internal variability of the climate system independent of ENSO. These elements contribute one-third and two-thirds of the total IOD variance, respectively. Both types of IOD variability develop into an east–west dipole pattern because of Bjerknes feedback and peak in September–November. The ENSO forced and internal IOD modes differ in several important ways. The forced IOD mode develops in August with a broad meridional pattern and eventually evolves into the Indian Ocean basin mode, while the internal IOD mode grows earlier in June, is more confined to the equator, and decays rapidly after October. The internal IOD mode is more skewed than the ENSO forced response. The destructive interference of ENSO forcing and internal variability can explain early terminating IOD events, referred to as IOD-like perturbations that fail to grow during boreal summer. The results have implications for predictability. Internal variability, as represented by preseason sea surface height anomalies off Sumatra, contributes to predictability considerably. Including this indicator of internal variability, together with ENSO, improves the predictability of IOD.

Corresponding author address: Shang-Ping Xie, 9500 Gilman Drive, MC 206, La Jolla, CA 92093-0206. E-mail: sxie@ucsd.edu
Save
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S.-P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, doi:10.1016/S0967-0645(03)00058-4.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S.-P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319, doi:10.1175/JCLI-3268.1.

    • Search Google Scholar
    • Export Citation
  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability in the tropical Indian Ocean. J. Climate, 15, 13581368, doi:10.1175/1520-0442(2002)015<1358:ODVOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, doi:10.1175/JCLI3797.1.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Y. Qiu, 2013: An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean dipole. J. Climate, 26, 28802890, doi:10.1175/JCLI-D-12-00483.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, doi:10.1175/JCLI-D-11-00501.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 510, 254258, doi:10.1038/nature13327.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., C. Gnanaseelan, J. S. Chowdary, and J.-J. Luo, 2014: Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res. Oceans, 119, 51055122, doi:10.1002/2013JC009713.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled system—The role of ocean dynamics. J. Climate, 19, 51225174, doi:10.1175/JCLI3903.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, doi:10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., S. Gualdi, and A. Navarra, 2007: A diagnostic study of the Indian Ocean dipole mode in El Niño and non–El Niño years. J. Climate, 20, 29612977, doi:10.1175/JCLI4153.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, K. Hu, and G. Huang, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 20232038, doi:10.1175/2008JCLI2590.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, doi:10.1175/JCLI-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 295 pp.

  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567582.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and G. Wang, 2009: Seasonal prediction of the Leeuwin Current using the POAMA dynamical seasonal forecast model. Climate Dyn., 34, 1129–1137, doi:10.1007/s00382-009-0570-3.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, LinHo, and J.-S. Kug, 2008: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848, doi:10.1175/2008JCLI2222.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007a: Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical Pacific. J. Climate, 20, 29172936, doi:10.1175/JCLI4151.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007b: Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J. Climate, 20, 29372960, doi:10.1175/JCLI4169.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, doi:10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, doi:10.1073/pnas.1215582110.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between the Indian Ocean and ENSO. J. Climate, 19, 17841801, doi:10.1175/JCLI3660.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710, doi:10.1029/2005GL024916.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, doi:10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17, 245265, doi:10.1175/1520-0442(2004)017<0245:CGSOAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 3058–3072, doi:10.1175/JCLI-D-14-00740.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C.-P. Chang, and Y. S. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, doi:10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, L., S.-P. Xie, X.-T. Zheng, T. Li, Y. Du, G. Huang, and W.-D. Yu, 2014: Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Climate Dyn., 43, 17151730, doi:10.1007/s00382-013-2000-9.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, doi:10.1175/JCLI4132.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008a: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, doi:10.1029/2007GL032793.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008b: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, doi:10.1175/2007JCLI1412.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, doi:10.1175/2009JCLI3104.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ogata, T., S.-P. Xie, J. Lan, and X. Zheng, 2013: Importance of ocean dynamics for the skewness of the Indian Ocean dipole mode. J. Climate, 26, 21452159, doi:10.1175/JCLI-D-11-00615.1.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31, L19306, doi:10.1029/2004GL020842.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modelling. Quart. J. Roy. Meteor. Soc., 121, 669704, doi:10.1002/qj.49712152311.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003a: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 27352751, doi:10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003b: Possible impacts of Indian Ocean Dipole mode event on global climate. Climate Res., 25, 151169, doi:10.3354/cr025151.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Shi, L., H. H. Hendon, O. Alves, J.-J. Luo, M. Balmaseda, and D. Anderson, 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140, 38673884, doi:10.1175/MWR-D-12-00001.1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004a: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17, 362372, doi:10.1175/1520-0442(2004)017<0362:RROTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and M. A. Alexander, 2004b: Surface and subsurface dipole variability in the Indian Ocean and its relation to ENSO. Deep-Sea Res. I, 51, 619635, doi:10.1016/j.dsr.2004.01.005.

    • Search Google Scholar
    • Export Citation
  • Song, Q., G. A. Vecchi, and A. J. Rosati, 2007: Indian Ocean variability in the GFDL CM2 coupled climate model. J. Climate, 20, 28952916, doi:10.1175/JCLI4159.1.

    • Search Google Scholar
    • Export Citation
  • Song, Q., G. A. Vecchi, and A. J. Rosati, 2008: Predictability of the Indian Ocean sea surface temperature anomalies in the GFDL coupled model. Geophys. Res. Lett., 35, L02701, doi:10.1029/2007GL031966.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J.-J. Luo, S. Masson, and T. Yamagata, 2007: Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J. Climate, 20, 28812894, doi:10.1175/JCLI4168.1.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2005: Potential predictability of tropical Indian Ocean SST anomalies. Geophys. Res. Lett., 32, L24702, doi:10.1029/2005GL024169.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-I. An, 2005: A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys. Res. Lett., 32, L15710, doi:10.1029/2005GL022709.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J.-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–212.

  • Yu, J.-Y., and K. M. Lau, 2004: Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere-ocean GCM study. Meteor. Atmos. Phys., 90, 179–191, doi:10.1007/s00703-004-0094-7.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29, 1204, doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett., 26, 735738, doi:10.1029/1999GL900072.

    • Search Google Scholar
    • Export Citation
  • Yu, W., B. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, doi:10.1029/2005GL024327.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, G. A. Vecchi, Q. Liu, and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. J. Climate, 23, 12401253, doi:10.1175/2009JCLI3326.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, A., H. H. Hendon, and O. Alves, 2005: Indian Ocean variability and its association with ENSO in a global coupled model. J. Climate, 18, 36343649, doi:10.1175/JCLI3493.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2020 674 42
PDF Downloads 1631 491 34