The Relationship between Contiguous El Niño and La Niña Revealed by Self-Organizing Maps

Xin Li Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, and Meteorology Station of the 92962 Troops, Guangzhou, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xin Li in
Current site
Google Scholar
PubMed
Close
,
Chongyin Li Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chongyin Li in
Current site
Google Scholar
PubMed
Close
,
Jian Ling LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jian Ling in
Current site
Google Scholar
PubMed
Close
, and
Yanke Tan Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Yanke Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study introduces a new methodology for identifying El Niño and La Niña events. Sea surface temperature (SST) anomaly patterns for El Niño and La Niña onset, peak, and end phases are classified by self-organizing maps (SOM) analysis. Both onset and end phases for El Niño and La Niña exhibit eastern Pacific (EP) and central Pacific (CP) types. The SST anomaly patterns in peak phase can be classified into EP, EP-like, and CP types for El Niño, and EP, mixed (MIX), and CP types for La Niña.

The general type of each El Niño or La Niña event is then defined according to the SST type for each of the three phases. There is no robust connection between the general types of the contiguous El Niño and La Niña except that the MIX La Niña rarely induces a subsequent CP El Niño. However, there are strong relationships between the end-phase type of El Niño and the onset-phase type of the subsequent La Niña. The EP-end-type El Niño favors transition to the CP-onset-type La Niña, while the CP-end-type El Niño favors transition to the EP-onset-type La Niña. On the other hand, the CP-end-type La Niña favors transition to EP-onset-type El Niño. Furthermore, an El Niño that occurs after the decay of La Niña favors initiating as an EP-onset type. These relationships are driven by different atmosphere–ocean dynamics, such as coupled air–sea feedback, thermocline feedback, slow SST mode, and Bjerknes feedbacks.

Corresponding author address: Jian Ling, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyao District, Beijing 100029, China. E-mail: lingjian@lasg.iap.ac.cn

Abstract

This study introduces a new methodology for identifying El Niño and La Niña events. Sea surface temperature (SST) anomaly patterns for El Niño and La Niña onset, peak, and end phases are classified by self-organizing maps (SOM) analysis. Both onset and end phases for El Niño and La Niña exhibit eastern Pacific (EP) and central Pacific (CP) types. The SST anomaly patterns in peak phase can be classified into EP, EP-like, and CP types for El Niño, and EP, mixed (MIX), and CP types for La Niña.

The general type of each El Niño or La Niña event is then defined according to the SST type for each of the three phases. There is no robust connection between the general types of the contiguous El Niño and La Niña except that the MIX La Niña rarely induces a subsequent CP El Niño. However, there are strong relationships between the end-phase type of El Niño and the onset-phase type of the subsequent La Niña. The EP-end-type El Niño favors transition to the CP-onset-type La Niña, while the CP-end-type El Niño favors transition to the EP-onset-type La Niña. On the other hand, the CP-end-type La Niña favors transition to EP-onset-type El Niño. Furthermore, an El Niño that occurs after the decay of La Niña favors initiating as an EP-onset type. These relationships are driven by different atmosphere–ocean dynamics, such as coupled air–sea feedback, thermocline feedback, slow SST mode, and Bjerknes feedbacks.

Corresponding author address: Jian Ling, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyao District, Beijing 100029, China. E-mail: lingjian@lasg.iap.ac.cn
Save
  • Aceituno, P., 1992: El Niño, the Southern Oscillation, and ENSO: Confusing names for a complex ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 73, 483485.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Banholzer, S., and S. Donner, 2014: The influence of different El Niño types on global average temperature. Geophys. Res. Lett., 41, 20932099, doi:10.1002/2014GL059520.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2009: La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett., 36, L12805, doi:10.1029/2009GL037885.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., A. H. Lynch, J. J. Cassano, and M. R. Koslow, 2006: Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA. Climate Res., 30, 8397, doi:10.3354/cr030083.

    • Search Google Scholar
    • Export Citation
  • Chao, J., S. Yuan, Q. Chao, and J. Tian, 2002: A data analysis study on the evolution of the EI Niño/La Niña cycle. Adv. Atmos. Sci., 19, 837844, doi:10.1007/s00376-002-0048-2.

    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., A. K. Sahai, and B. Goswami, 2008: Objective identification of nonlinear convectively coupled phases of monsoon intraseasonal oscillation: Implications for prediction. J. Atmos. Sci., 65, 15491569, doi:10.1175/2007JAS2474.1.

    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., A. Vintzileos, and C. Zhang, 2013: A description of the Madden–Julian oscillation based on a self-organizing map. J. Climate, 26, 17161732, doi:10.1175/JCLI-D-12-00123.1.

    • Search Google Scholar
    • Export Citation
  • Chung, P.-H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26, 361379, doi:10.1175/JCLI-D-12-00106.1.

    • Search Google Scholar
    • Export Citation
  • Fu, C. B., 1985: Two sea surface temperature warming patterns during El Niño. Chin. Sci. Bull., 30, 596599.

  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, doi:10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and Coauthors, 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Climate Change, 2, 524529, doi:10.1038/nclimate1553.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293, doi:10.1073/pnas.0606291103.

    • Search Google Scholar
    • Export Citation
  • Hong, L.-C., LinHo, and F.-F. Jin, 2014: A Southern Hemisphere booster of super El Niño. Geophys. Res. Lett., 41, 21422149, doi:10.1002/2014GL059370.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Jha, W. Wang, B. Huang, and B. Huang, 2012: An analysis of warm pool and cold tongue El Niños: Air–sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 20172035, doi:10.1007/s00382-011-1224-9.

    • Search Google Scholar
    • Export Citation
  • Iskandar, I., 2009: Variability of satellite-observed sea surface height in the tropical Indian Ocean: Comparison of EOF and SOM analysis. Makara Seri Sains, 13 (2), 173179, doi:10.7454/mss.v13i2.421.

    • Search Google Scholar
    • Export Citation
  • Iskandar, I., 2010: Seasonal and interannual patterns of sea surface temperature in Banda Sea as revealed by self-organizing maps. Cont. Shelf Res., 30, 11361148, doi:10.1016/j.csr.2010.03.003.

    • Search Google Scholar
    • Export Citation
  • Jin, B., G. Wang, Y. Liu, and R. Zhang, 2010: Interaction between the East China Sea Kuroshio and the Ryukyu Current as revealed by the self-organizing map. J. Geophys. Res., 115, C12047, doi:10.1029/2010JC006437.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, doi:10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, doi:10.1175/2009JCLI3099.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, doi:10.1175/2008JCLI2380.1.

    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 77–80, doi:10.1126/science.1174062.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. 3rd ed. Springer, 501 pp.

  • Kohonen, T., J. Hynninen, J. Kangas, and J. Laaksonen, 1995: SOM_PAK: The self- organizing maps program package. Helsinki University of Technology, 27 pp. [Available online at http://www.cis.hut.fi/research/som_pak/som_doc.txt.]

  • Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi:10.1029/2011GL048237.

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239, doi:10.1175/2009JCLI3293.1.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Larson, S., S.-K. Lee, C. Wang, E.-S. Chung, and D. Enfield, 2012: Impacts of non-canonical El Niño patterns on Atlantic hurricane activity. Geophys. Res. Lett., 39, L14706, doi:10.1029/2012GL052595.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., P. N. DiNezio, E.-S. Chung, S.-W. Yeh, A. T. Wittenberg, and C. Wang, 2014a: Spring persistence, transition and resurgence of El Niño. Geophys. Res. Lett., 41, 85788585, doi:10.1002/2014GL062484.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., B. E. Mapes, C. Wang, D. B. Enfield, and S. J. Weaver, 2014b: Springtime ENSO phase evolution and its relation to rainfall in the continental U.S. Geophys. Res. Lett., 41, 16731680, doi:10.1002/2013GL059137.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central- equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • Leloup, J., M. Lengaigne, and J. P. Boulanger, 2008: Twentieth century ENSO characteristics in the IPCC database. Climate Dyn., 30, 277291, doi:10.1007/s00382-007-0284-3.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the World Ocean. Science, 287, 22252229, doi:10.1126/science.287.5461.2225.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World Ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., D. C. Collins, and Z.-Z. Hu, 2013: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño–Southern Oscillation. Climate Dyn., 40, 12231236, doi:10.1007/s00382-012-1331-2.

    • Search Google Scholar
    • Export Citation
  • Li, C. Y., and M. Q. Mu, 1999: El Niño occurrence and sub-surface ocean temperature anomalies in the Pacific warm pool. Chin. J. Atmos. Sci., 5, 513521.

    • Search Google Scholar
    • Export Citation
  • Li, C. Y., and M. Q. Mu, 2002: A further study of the essence of ENSO. Chin. J. Atmos. Sci., 4, 309328.

  • Li, T., 1997: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 28722887, doi:10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., and C. Li, 2014: Occurrence of two types of El Niño events and the subsurface ocean temperature anomalies in the equatorial Pacific. Chin. Sci. Bull., 59, 34713483, doi:10.1007/s11434-014-0365-8.

    • Search Google Scholar
    • Export Citation
  • Lin, G.-F., and L.-H. Chen, 2006: Identification of homogeneous regions for regional frequency analysis using the self-organizing map. J. Hydrol., 324, 19, doi:10.1016/j.jhydrol.2005.09.009.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2005: Patterns of ocean current variability on the West Florida Shelf using the self-organizing maps. J. Geophys. Res., 110, C06003, doi:10.1029/2004JC002786.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and L. K. Shay, 2007: Current patterns on the West Florida Shelf from joint self-organizing map analyses of HF radar and ADCP data. J. Atmos. Oceanic Technol., 24, 702712, doi:10.1175/JTECH1999.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillation and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584606, doi:10.1175/1520-0469(1991)048<0584:TSSSTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ren, H. L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi:10.1029/2010GL046031.

  • Ren, H. L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523, doi:10.1175/JCLI-D-12-00601.1.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45, 549566, doi:10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. E. Hurlburt, and E. J. Metzger, 2011: Anomalous tropical ocean circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001, doi:10.1029/2011JC007304.

    • Search Google Scholar
    • Export Citation
  • Singh, A., T. Delcroix, and S. Cravatte, 2011: Contrasting the flavors of El Niño and Southern Oscillation using sea surface salinity observations. J. Geophys. Res., 116, C06016, doi:10.1029/2010JC006862.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Solidoro, C., V. Bandelj, P. Barbieri, G. Cossarini, and S. Fonda Umani, 2007: Understanding dynamic of biogeochemical properties in the northern Adriatic Sea by using self-organizing maps and k-means clustering. J. Geophys. Res., 112, C07S90, doi:10.1029/2006JC003553.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. H. Weisberg, 1994: On the “slow mode” mechanism in ENSO-related coupled ocean–atmosphere models. J. Climate, 7, 16571667, doi:10.1175/1520-0442(1994)007<1657:OTMMIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, doi:10.1175/JCLI-D-12-00107.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Li, M. Mu, and W. Duan, 2013: Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Climate Dyn., 40, 28872902, doi:10.1007/s00382-012-1434-9.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, doi:10.1007/s00382-013-1711-2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Zhou, C. Li, and D. Wang, 2014: Comparison of the impact of two types of El Niño on tropical cyclone genesis over the South China Sea. Int. J. Climatol., 34, 26512660, doi:10.1002/joc.3865.

    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. Behera, S. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113129, doi:10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, doi:10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, doi:10.1007/s00382-012-1427-8.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2010: Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys. Res. Lett., 37, L15705, doi:10.1029/2010GL044082.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2013: Identifying the types of major El Niño events since 1870. Int. J. Climatol., 33, 21052112, doi:10.1002/joc.3575.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337344, doi:10.1007/s00704-010-0307-6.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, doi:10.1175/JCLI-D-11-00576.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and H. M. Yan, 2013: Different types of La Niña events and different responses of the tropical atmosphere. Chin. Sci. Bull., 58, 406415, doi:10.1007/s11434-012-5423-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., L. Wang, B. Xiang, L. Qi, and J. He, 2015: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 1351–1366, doi:10.1007/s00382-014-2155-z.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., C. Y. Li, and X. Wang, 2007: Possible connection between Pacific oceanic interdecadal pathway and East Asian winter monsoon. Geophys. Res. Lett., 34, L01701, doi:10.1029/2006GL027809.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 987 238 58
PDF Downloads 633 150 11