Interhemispheric Aerosol Radiative Forcing and Tropical Precipitation Shifts during the Late Twentieth Century

Robert J. Allen Department of Earth Sciences, University of California, Riverside, Riverside, California

Search for other papers by Robert J. Allen in
Current site
Google Scholar
PubMed
Close
,
Amato T. Evan Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Amato T. Evan in
Current site
Google Scholar
PubMed
Close
, and
Ben B. B. Booth Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Ben B. B. Booth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Through the latter half of the twentieth century, meridional shifts in tropical precipitation have been associated with severe droughts. Although linked to a variety of causes, the origin of these shifts remains elusive. Here, it is shown that they are unlikely to arise from internal variability of the climate system alone, as simulated by coupled ocean–atmosphere climate models. Similar to previous work, the authors find that anthropogenic and volcanic aerosols are the dominant drivers of simulated twentieth-century tropical precipitation shifts. Models that include the cloud-albedo and lifetime aerosol indirect effects yield significantly larger shifts than models that lack aerosol indirect effects and also reproduce most of the southward tropical precipitation shift in the Pacific. However, all models significantly underestimate the magnitude of the observed shifts in the Atlantic sector, unless driven by observed SSTs. Mechanistically, tropical precipitation shifts are driven by interhemispheric sea surface temperature variations, which are associated with hemispherically asymmetric changes in low-latitude surface pressure, winds, and low clouds, as well as the strength, location, and cross-equatorial energy transport of the Hadley cells. Models with a larger hemispheric aerosol radiative forcing gradient yield larger hemispheric temperature contrasts and, in turn, larger meridional precipitation shifts. The authors conclude that aerosols are likely the dominant driver of the observed southward tropical precipitation shift in the Pacific. Aerosols are also significant drivers of the Atlantic shifts, although one cannot rule out a contribution from natural variability to account for the magnitude of the observed shifts.

Corresponding author address: Robert J. Allen, Department of Earth Sciences, University of California, Riverside, Riverside, CA 92507. E-mail: rjallen@ucr.edu

Abstract

Through the latter half of the twentieth century, meridional shifts in tropical precipitation have been associated with severe droughts. Although linked to a variety of causes, the origin of these shifts remains elusive. Here, it is shown that they are unlikely to arise from internal variability of the climate system alone, as simulated by coupled ocean–atmosphere climate models. Similar to previous work, the authors find that anthropogenic and volcanic aerosols are the dominant drivers of simulated twentieth-century tropical precipitation shifts. Models that include the cloud-albedo and lifetime aerosol indirect effects yield significantly larger shifts than models that lack aerosol indirect effects and also reproduce most of the southward tropical precipitation shift in the Pacific. However, all models significantly underestimate the magnitude of the observed shifts in the Atlantic sector, unless driven by observed SSTs. Mechanistically, tropical precipitation shifts are driven by interhemispheric sea surface temperature variations, which are associated with hemispherically asymmetric changes in low-latitude surface pressure, winds, and low clouds, as well as the strength, location, and cross-equatorial energy transport of the Hadley cells. Models with a larger hemispheric aerosol radiative forcing gradient yield larger hemispheric temperature contrasts and, in turn, larger meridional precipitation shifts. The authors conclude that aerosols are likely the dominant driver of the observed southward tropical precipitation shift in the Pacific. Aerosols are also significant drivers of the Atlantic shifts, although one cannot rule out a contribution from natural variability to account for the magnitude of the observed shifts.

Corresponding author address: Robert J. Allen, Department of Earth Sciences, University of California, Riverside, Riverside, CA 92507. E-mail: rjallen@ucr.edu
Save
  • Ackerley, D., B. B. B. Booth, S. H. E. Knight, E. J. Highwood, D. J. Frame, M. R. Allen, and D. P. Rowell, 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J. Climate, 24, 4999–5014, doi:10.1175/JCLI-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., 2015: A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. J. Geophys. Res. Atmos., doi:10.1002/2015JD023623, in press.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and S. C. Sherwood, 2011: The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dyn., 36, 1959–1978, doi:10.1007/s00382-010-0898-8.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543–556, doi:10.5194/acp-9-543-2009.

    • Search Google Scholar
    • Export Citation
  • Arbuszewski, J. A., P. B. deMenocal, C. ClĂ©roux, L. Bradtmiller, and A. Mix, 2013: Meridional shifts of the Atlantic intertropical convergence zone since the last glacial maximum. Nat. Geosci., 6, 959–962, doi:10.1038/ngeo1961.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., A. C. Clement, T. Mauritsen, G. Radel, and B. Stevens, 2015: The influence of cloud feedbacks on equatorial Atlantic variability. J. Climate, 28, 2725–2744, doi:10.1175/JCLI-D-14-00495.1.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Quaas, J. J. Morcrettes, and O. Boucher, 2013: Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos. Chem. Phys., 13, 2045–2062, doi:10.5194/acp-13-2045-2013.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706, doi:10.1029/2006GL026067.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Chang, C. Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 2540–2555, doi:10.1175/2010JCLI4065.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249–266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J. Climate, 17, 4143–4158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477–496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383–412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., C. Y. Chang, and M. F. Wehner, 2013: Long-term behavior of the Atlantic interhemispheric SST gradient in the CMIP5 historical simulations. J. Climate, 26, 8628–8640, doi:10.1175/JCLI-D-12-00487.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp. [Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.]

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dima, M., and G. Lohmann, 2010: Evidence for two distinct models of large-scale ocean circulation changes over the last century. J. Climate, 23, 5–16, doi:10.1175/2009JCLI2867.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2000: Interannual to decadal variability in the tropical Atlantic. J. Climate, 13, 777–792, doi:10.1175/1520-0442(2000)013<0777:ITDVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., D. M. W. Frierson, and D. S. Battisti, 2014: The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. Climate Dyn., 43, 1041–1055, doi:10.1007/s00382-013-1843-4.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., G. R. Foltz, D. Zhang, and D. J. Vimont, 2011: Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nat. Geosci., 4, 762–765, doi:10.1038/ngeo1276.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., R. J. Allen, R. Bennartz, and D. J. Vimont, 2013: The modification of sea surface temperature anomaly linear damping time scales by stratocumulus clouds. J. Climate, 26, 3619–3630, doi:10.1175/JCLI-D-12-00370.1.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, S. Fiedler, and O. Doherty, 2014: An analysis of aeolian dust in climate models. Geophys. Res. Lett., 41, 5996–6001, doi:10.1002/2014GL060545.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602–607, doi:10.1038/320602a0.

    • Search Google Scholar
    • Export Citation
  • Friedman, A. R., Y. T. Hwang, J. C. H. Chiang, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 5419–5433, doi:10.1175/JCLI-D-12-00525.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720–733, doi:10.1175/JCLI-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys., 13, 9971–9974, doi:10.5194/acp-13-9971-2013.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 1027–1030, doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Grandey, B. S., and P. Stier, 2010: A critical look at spatial scale choices in satellite-based aerosol indirect effect studies. Atmos. Chem. Phys., 10, 11 459–11 470, doi:10.5194/acp-10-11459-2010.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. Jones, T. Osborn, and D. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Haug, G. H., K. A. Hughen, D. M. Sigman, L. C. Peterson, and U. Rohl, 2001: Southward migration of the intertropical convergence zone through the Holocene. Science, 293, 1304–1308, doi:10.1126/science.1059725.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Climate Change, 3, 660–665, doi:10.1038/nclimate1857.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century Northern and Southern African rainfall change. J. Climate, 19, 3989–4008, doi:10.1175/JCLI3842.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 2845–2850, doi:10.1002/grl.50502.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 7017–7039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., C. Thorncroft, and B. B. B. Booth, 2014: The multidecadal Atlantic SST–Sahel rainfall teleconnection in CMIP5 simulations. J. Climate, 27, 784–806, doi:10.1175/JCLI-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate, 24, 5125–5133, doi:10.1175/2011JCLI4108.1.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter08_FINAL.pdf.]

  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Peterson, L. C., G. H. Haug, K. A. Hughen, and U. Röhl, 2000: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290, 1947–1951, doi:10.1126/science.290.5498.1947.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and R. S. Vose, 1997: An overview of the global historical climatology network temperature database. Bull. Amer. Meteor. Soc., 78, 2837–2849, doi:10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ECMWF Tech. Rep., 59 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/era/era_report_series/RS_14.pdf.

  • Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ridley, H. E., and Coauthors, 2015: Aerosol forcing of the position of the intertropical convergence zone since AD 1550. Nat. Geosci., 8, 195–200, doi:10.1038/ngeo2353.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 2103–2116, doi:10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. A. Collier, and J.-J. Luo, 2015: Effects of declining aerosols on projections of zonally averaged tropical precipitation. Environ. Res. Lett., 10, 044018, doi:10.1088/1748-9326/10/4/044018.

    • Search Google Scholar
    • Export Citation
  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depth, 1850–1990. J. Geophys. Res., 98, 22 987–22 994, doi:10.1029/93JD02553.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53, doi:10.1038/nature13636.

    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and D. M. W. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate, 27, 3035–3042, doi:10.1175/JCLI-D-13-00691.1.

  • Shindell, D. T., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 2939–2974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., and S.-P. Xie, 2002: Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Japan, 80, 1199–1219, doi:10.2151/jmsj.80.1199.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Terray, L., 2012: Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett., 39, L19712, doi:10.1029/2012GL053046.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. J. Kennedy, and P. D. Jones, 2010: An abrupt drop in Northern Hemisphere sea surface temperatures around 1970. Nature, 467, 444–447, doi:10.1038/nature09394.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 627 pp.

  • Williams, K. D., A. Jones, D. L. Roberts, C. A. Senior, and M. J. Woodage, 2001: The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Climate Dyn., 17, 845–856, doi:10.1007/s003820100150.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 2577–2586, doi:10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 1135–1144, doi:10.1175/JAS-D-12-0331.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1422 302 20
PDF Downloads 729 221 20