Relative Importance of the Austral Summer and Autumn SAM in Modulating Southern Hemisphere Extratropical Autumn SST

Fei Zheng State Key Laboratory of Numerical Modeling for Atmospheric Sciences, and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Fei Zheng in
Current site
Google Scholar
PubMed
Close
,
Jianping Li College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Juan Feng College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Juan Feng in
Current site
Google Scholar
PubMed
Close
,
Yanjie Li State Key Laboratory of Numerical Modeling for Atmospheric Sciences, and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yanjie Li in
Current site
Google Scholar
PubMed
Close
, and
Yang Li College of Atmospheric Science, Lanzhou University, Lanzhou, Gansu, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences, and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yang Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea surface temperature (SST) variability in the extratropical Southern Hemisphere is mainly determined by physical processes at the air–sea interface associated with the Southern Hemisphere annular mode (SAM). Both the austral summer [December–February (DJF)] and autumn [March–May (MAM)] SAM can imprint their signals on southern extratropical MAM SST. Here three approaches are employed to determine the relative importance of the DJF and MAM SAM in modulating southern extratropical MAM SST: a simple lead–lag correlation without SST decomposition, a decomposition method based on linear regression, and a new approach named the persistent signal decomposition (PSD). The results show that the DJF SAM plays a more important role than the MAM SAM in driving MAM large-scale southern extratropical SST anomalies, implying that MAM SST anomalies caused by the preceding DJF SAM would not be largely perturbed by the MAM SAM, and thus the DJF SAM can be regarded as an effective predictor for the following season’s climate. The PSD also provides an estimation of the contribution of atmospheric persistence and SST persistence toward cross-seasonal influence of the DJF SAM on MAM southern extratropical SST. The results show that this cross-seasonal influence is mainly caused by the SST persistence. The detection of the relative importance of the preceding and contemporaneous atmospheric signal in driving SSTA contributes to the understanding of air–sea interactions and helps to obtain better SST-based statistical predictions. The PSD has the potential to be employed in the North Atlantic and other extratropical oceans.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0170.s1.

Corresponding author address: Dr. Jianping Li, College of Global Change and Earth System Science, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, China. E-mail: ljp@bnu.edu.cn

Abstract

Sea surface temperature (SST) variability in the extratropical Southern Hemisphere is mainly determined by physical processes at the air–sea interface associated with the Southern Hemisphere annular mode (SAM). Both the austral summer [December–February (DJF)] and autumn [March–May (MAM)] SAM can imprint their signals on southern extratropical MAM SST. Here three approaches are employed to determine the relative importance of the DJF and MAM SAM in modulating southern extratropical MAM SST: a simple lead–lag correlation without SST decomposition, a decomposition method based on linear regression, and a new approach named the persistent signal decomposition (PSD). The results show that the DJF SAM plays a more important role than the MAM SAM in driving MAM large-scale southern extratropical SST anomalies, implying that MAM SST anomalies caused by the preceding DJF SAM would not be largely perturbed by the MAM SAM, and thus the DJF SAM can be regarded as an effective predictor for the following season’s climate. The PSD also provides an estimation of the contribution of atmospheric persistence and SST persistence toward cross-seasonal influence of the DJF SAM on MAM southern extratropical SST. The results show that this cross-seasonal influence is mainly caused by the SST persistence. The detection of the relative importance of the preceding and contemporaneous atmospheric signal in driving SSTA contributes to the understanding of air–sea interactions and helps to obtain better SST-based statistical predictions. The PSD has the potential to be employed in the North Atlantic and other extratropical oceans.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0170.s1.

Corresponding author address: Dr. Jianping Li, College of Global Change and Earth System Science, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, China. E-mail: ljp@bnu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 47.50 KB)
Save
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, doi:10.1175/2010JCLI3205.1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W. J., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 11591174, doi:10.1175/1520-0442(2002)015<1159:MOIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, W., 1982: Fluctuations in Northern Hemisphere 700 mb height field associated with the Southern Oscillation. Mon. Wea. Rev., 110, 808823, doi:10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 12441259, doi:10.1175/2007JCLI1809.1.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., M. A. Alexander, C. Deser, and M. H. England, 2011: On the persistence of cold season SST anomalies associated with the annular modes. J. Climate, 24, 25002515, doi:10.1175/2010JCLI3535.1.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., G. R. Simpkins, and M. H. England, 2015: Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Climate, 28, 5665, doi:10.1175/JCLI-D-14-00438.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, doi:10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, doi:10.1175/2011JCLI3621.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., E. Steig, D. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, doi:10.1175/JCLI-D-11-00523.1.

    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., and J. P. Li, 2011: Winter persistence barrier of sea surface temperature in the northern tropical Atlantic associated with ENSO. J. Climate, 24, 22852299, doi:10.1175/2011JCLI3784.1.

    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., and J. P. Li, 2012: Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean. J. Climate, 25, 81778195, doi:10.1175/JCLI-D-11-00739.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, and Y. Li, 2010: Is there a relationship between the SAM and southwest Western Australian winter rainfall? J. Climate, 23, 60826089, doi:10.1175/2010JCLI3667.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, and H. L. Xu, 2013: Increased summer rainfall in northwest Australia linked to southern Indian Ocean climate variability. J. Geophys. Res. Atmos., 118, 467480, doi:10.1029/2012JD018323.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part 2. Application to sea-surface temperature variability and thermocline variability. Tellus, 29A, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

    • Search Google Scholar
    • Export Citation
  • Gong, T. T., S. B. Feldstein, and D. H. Luo, 2010: The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci., 67, 28542870, doi:10.1175/2010JAS3311.1.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, doi:10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res., 109, C09005, doi:10.1029/2004JC002403.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., and J. X. L. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, doi:10.1029/2003GL017441.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Coauthors, 2013a: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin. J. Atmos. Sci., 37, 518538.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., C. Sun, and F. F. Jin, 2013b: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502, doi:10.1002/2013GL057877.

    • Search Google Scholar
    • Export Citation
  • Li, X. F., and J. P. Li, 2012: Analysis of the quasi-geostrophic adjustment process of the Southern Hemisphere annular mode (in Chinese). Chin. J. Atmos. Sci., 36, 755768.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Search Google Scholar
    • Export Citation
  • Namias, J., X. Yuan, and D. R. Cayan, 1988: Persistence of North Pacific sea surface temperature and atmospheric flow patterns. J. Climate, 1, 682703, doi:10.1175/1520-0442(1988)001<0682:PONPSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nan, S. L., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266, doi:10.1029/2003GL018381.

    • Search Google Scholar
    • Export Citation
  • Nan, S. L., J. P. Li, X. J. Yuan, and P. Zhao, 2009: Boreal spring Southern Hemisphere Annular Mode, Indian Ocean sea surface temperature, and East Asian summer monsoon. J. Geophys. Res., 114, D02103, doi:10.1029/2008JD010045.

    • Search Google Scholar
    • Export Citation
  • Pan, L., 2005: Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys. Res. Lett., 32, L06707, doi:10.1029/2005GL022427.

    • Search Google Scholar
    • Export Citation
  • Pan, L., 2007: Synoptic eddy feedback and air–sea interaction in the North Atlantic region. Climate Dyn., 29, 647659, doi:10.1007/s00382-007-0256-7.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rodwell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320323, doi:10.1038/18648.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., N. P. Gillett, D. P. Stevens, G. J. Marshall, and H. K. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the southern annular mode. J. Climate, 22, 806818, doi:10.1175/2008JCLI2416.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486, doi:10.1175/JCLI3843.1.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20, 36773692, doi:10.1175/JCLI4200.1.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., S. McGregor, A. S. Taschetto, L. M. Ciasto, and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, doi:10.1175/JCLI-D-13-00615.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, doi:10.1038/nature11576.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, doi:10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 26532667, doi:10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asia teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: On the persistence of decadal SST anomalies in the North Atlantic. J. Climate, 13, 30173028, doi:10.1175/1520-0442(2000)013<3017:OTPODS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562578, doi:10.1175/1520-0442(2000)013<0562:SMZWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., J. P. Li, B. Wang, and X. H. Liu, 2009a: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, doi:10.1029/2008JD011501.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., B. Wang, J. P. Li, and F. Jin, 2009b: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., J. Li, Z. Jiang, J. He, and X. Zhu, 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int. J. Climatol., 32, 794800, doi:10.1002/joc.2309.

    • Search Google Scholar
    • Export Citation
  • Xu, H., J. Feng, and C. Sun, 2013: Impact of preceding summer North Atlantic Oscillation on early autumn precipitation over central China. Atmos. Oceanic Sci. Lett., 6, 417422.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., and J. P. Li, 2012: Impact of preceding boreal winter southern hemisphere annular mode on spring precipitation over south China and related mechanism (in Chinese). Chin. J. Geophys., 55, 3542–3557.

  • Zheng, F., J. P. Li, R. Clark, and H. Nnamchi, 2013: Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Climate, 26, 98609879, doi:10.1175/JCLI-D-13-00204.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., and R. C. Yu, 2004: Sea-surface temperature induced variability of the Southern Annular Mode in an atmospheric general circulation model. Geophys. Res. Lett., 31, L24206, doi:10.1029/2004GL021473.

    • Search Google Scholar
    • Export Citation
  • Zuo, J. Q., W. J. Li, C. H. Sun, L. Xu, and H. L. Ren, 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 11731186, doi:10.1007/s00376-012-2125-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 749 135 15
PDF Downloads 299 62 2