On Discriminating between GCM Forcing Configurations Using Bayesian Reconstructions of Late-Holocene Temperatures

Martin Tingley Department of Meteorology, and Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Martin Tingley in
Current site
Google Scholar
PubMed
Close
,
Peter F. Craigmile Department of Statistics, The Ohio State University, Columbus, Ohio

Search for other papers by Peter F. Craigmile in
Current site
Google Scholar
PubMed
Close
,
Murali Haran Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Murali Haran in
Current site
Google Scholar
PubMed
Close
,
Bo Li Department of Statistics, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Bo Li in
Current site
Google Scholar
PubMed
Close
,
Elizabeth Mannshardt ** Department of Statistics, North Carolina State University, Raleigh, North Carolina

Search for other papers by Elizabeth Mannshardt in
Current site
Google Scholar
PubMed
Close
, and
Bala Rajaratnam Department of Environmental Earth System Science, Department of Statistics, and the Woods Institute for the Environment, Stanford University, Stanford, California

Search for other papers by Bala Rajaratnam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several climate modeling groups have recently generated ensembles of last-millennium climate simulations under different forcing scenarios. These experiments represent an ideal opportunity to establish the baseline feasibility of using proxy-based reconstructions of late-Holocene climate as out-of-calibration tests of the fidelity of the general circulation models used to project future climate. This paper develops a formal statistical model for assessing the agreement between members of an ensemble of climate simulations and the ensemble of possible climate histories produced from a hierarchical Bayesian climate reconstruction. As the internal variabilities of the simulated and reconstructed climate are decoupled from one another, the comparison is between the two latent, or unobserved, forced responses. Comparisons of the spatial average of a 600-yr high northern latitude temperature reconstruction to suites of last-millennium climate simulations from the GISS-E2 and CSIRO models, respectively, suggest that the proxy-based reconstructions are able to discriminate only between the crudest features of the simulations within each ensemble. Although one of the three volcanic forcing scenarios used in the GISS-E2 ensemble results in superior agreement with the reconstruction, no meaningful distinctions can be made between simulations performed with different estimates of solar forcing or land cover changes. In the case of the CSIRO model, sequentially adding orbital, greenhouse gas, solar, and volcanic forcings to the simulations generally improves overall consensus with the reconstruction, though the distinctions are not individually significant.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0208.1.s1.

Corresponding author address: Martin Tingley, Dept. of Meteorology, The Pennsylvania State University, 510 Walker Bldg., University Park, PA 16802. E-mail: martin.tingley@gmail.com

Abstract

Several climate modeling groups have recently generated ensembles of last-millennium climate simulations under different forcing scenarios. These experiments represent an ideal opportunity to establish the baseline feasibility of using proxy-based reconstructions of late-Holocene climate as out-of-calibration tests of the fidelity of the general circulation models used to project future climate. This paper develops a formal statistical model for assessing the agreement between members of an ensemble of climate simulations and the ensemble of possible climate histories produced from a hierarchical Bayesian climate reconstruction. As the internal variabilities of the simulated and reconstructed climate are decoupled from one another, the comparison is between the two latent, or unobserved, forced responses. Comparisons of the spatial average of a 600-yr high northern latitude temperature reconstruction to suites of last-millennium climate simulations from the GISS-E2 and CSIRO models, respectively, suggest that the proxy-based reconstructions are able to discriminate only between the crudest features of the simulations within each ensemble. Although one of the three volcanic forcing scenarios used in the GISS-E2 ensemble results in superior agreement with the reconstruction, no meaningful distinctions can be made between simulations performed with different estimates of solar forcing or land cover changes. In the case of the CSIRO model, sequentially adding orbital, greenhouse gas, solar, and volcanic forcings to the simulations generally improves overall consensus with the reconstruction, though the distinctions are not individually significant.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0208.1.s1.

Corresponding author address: Martin Tingley, Dept. of Meteorology, The Pennsylvania State University, 510 Walker Bldg., University Park, PA 16802. E-mail: martin.tingley@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 130.28 KB)
Save
  • Ahmed, M., and Coauthors, 2013: Continental-scale temperature variability during the past two millennia. Nat. Geosci., 6, 339–346, doi:10.1038/ngeo1797.

  • Allen, M., and P. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477–491, doi:10.1007/s00382-003-0313-9.

    • Search Google Scholar
    • Export Citation
  • Barboza, L., B. Li, M. P. Tingley, and F. G. Viens, 2014: Reconstructing past temperatures from natural proxies and estimated climate forcings using short-and long-memory models. Ann. Appl. Stat., 8, 1966–2001, doi:10.1214/14-AOAS785.

    • Search Google Scholar
    • Export Citation
  • Bayarri, M., J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin, and J. Tu, 2007: A framework for validation of computer models. Technometrics, 49, 138–154, doi:10.1198/004017007000000092.

    • Search Google Scholar
    • Export Citation
  • Bhat, K. S., M. Haran, R. Olson, and K. Keller, 2012: Inferring likelihoods and climate system characteristics from climate models and multiple tracers. Environmetrics, 23, 345–362, doi:10.1002/env.2149.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, B. Otto-Bliesner, A. Abe-Ouchi, J. Jungclaus, and J.-Y. Peterschmitt, 2011: The Paleoclimate Modeling Intercomparison Project contribution to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 15–19.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., 1993: Measurement, Regression, and Calibration. Clarendon Press, 201 pp.

  • Chang, W., M. Haran, R. Olson, and K. Keller, 2014: Fast dimension-reduced climate model calibration and the effect of data aggregation. Ann. Appl. Stat., 8, 649–673, doi:10.1214/14-AOAS733.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2014: Straight line fitting and predictions: On a marginal likelihood approach to linear regression and errors-in-variables models. J. Climate, 27, 2014–2031, doi:10.1175/JCLI-D-13-00299.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter12_FINAL.pdf.]

  • Crowley, T. J., G. Zielinski, B. Vinther, R. Udisti, K. Kreutz, J. Cole-Dai, and E. Castellano, 2008: Volcanism and the little ice age. PAGES News, No. 16, 22–23.

  • Dean, A. M., and D. Voss, 1999: Design and Analysis of Experiments. Springer, 742 pp.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf.]

  • Forest, C., P. Stone, A. Sokolov, M. Allen, and M. Webster, 2002: Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295, 113–117, doi:10.1126/science.1064419.

    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.

  • Gelman, A., J. Carlin, H. Stern, and D. Rubin, 2003: Bayesian Data Analysis. 2nd ed. Chapman & Hall/CRC, 696 pp.

  • Goosse, H., H. Renssen, A. Timmermann, R. S. Bradley, and M. E. Mann, 2006: Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Climate Dyn., 27, 165–184, doi:10.1007/s00382-006-0128-6.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Crespin, A. de Montety, M. Mann, H. Renssen, and A. Timmermann, 2010: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J. Geophys. Res., 115, D09108, doi:10.1029/2009JD012737.

  • Guiot, J., J.-J. Boreux, P. Braconnot, and F. Torre, 1999: Data-model comparison using fuzzy logic in paleoclimatology. Climate Dyn., 15, 569–581, doi:10.1007/s003820050301.

    • Search Google Scholar
    • Export Citation
  • Heaton, M. J., W. Kleiber, S. R. Sain, and M. Wiltberger, 2015: Emulating and calibrating the multiple-fidelity Lyon–Fedder–Mobarry magnetosphere–ionosphere coupled computer model. J. Roy. Stat. Soc., 64C, 93–113, doi:10.1111/rssc.12064.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., P. Stott, M. Allen, J. Mitchell, S. Tett, and U. Cubasch, 2000: Optimal detection and attribution of climate change: Sensitivity of results to climate model differences. Climate Dyn., 16, 737–754, doi:10.1007/s003820000071.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, M. Allen, W. T. Hyde, H. N. Pollack, J. Smerdon, and E. Zorita, 2007: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650–666, doi:10.1175/JCLI4011.1.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., J. Luterbacher, F. González-Rouco, S. F. Tett, T. Crowley, and E. Xoplaki, 2011: Influence of human and natural forcing on European seasonal temperatures. Nat. Geosci., 4, 99–103, doi:10.1038/ngeo1057.

    • Search Google Scholar
    • Export Citation
  • Hind, A., and A. Moberg, 2013: Past millennial solar forcing magnitude. Climate Dyn., 41, 2527–2537, doi:10.1007/s00382-012-1526-6.

    • Search Google Scholar
    • Export Citation
  • Hind, A., A. Moberg, and R. Sundberg, 2012: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium—Part 2: A pseudo-proxy study addressing the amplitude of solar forcing. Climate Past, 8, 1355–1365, doi:10.5194/cp-8-1355-2012.

    • Search Google Scholar
    • Export Citation
  • Jansen, E., and Coauthors, 2007: Palaeoclimate. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 433–497.

  • Kaplan, J. O., K. M. Krumhardt, E. C. Ellis, W. F. Ruddiman, C. Lemmen, and K. K. Goldewijk, 2011: Holocene carbon emissions as a result of anthropogenic land cover change. Holocene, 21, 775–791, doi:10.1177/0959683610386983.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., P. F. Craigmile, P. Guttorp, M. Haran, B. Sansó, and M. L. Stein, 2013: Uncertainty analysis in climate change assessments. Nat. Climate Change, 3, 769–771, doi:10.1038/nclimate1980.

    • Search Google Scholar
    • Export Citation
  • Kaufman, D., D. Schneider, N. McKay, and C. Ammann, 2009: Recent warming reverses long-term Arctic cooling. Science, 325, 1236–1239, doi:10.1126/science.1173983.

    • Search Google Scholar
    • Export Citation
  • Li, B., D. Nychka, and C. Ammann, 2007: The ‘hockey stick’ and the 1990s: A statistical perspective on reconstructing hemispheric temperatures. Tellus, 59A, 591–598, doi:10.1111/j.1600-0870.2007.00270.x.

    • Search Google Scholar
    • Export Citation
  • Li, B., D. Nychka, and C. Ammann, 2010: The value of multiproxy reconstruction of past climate. J. Amer. Stat. Assoc., 105, 883–911, doi:10.1198/jasa.2010.ap09379.

    • Search Google Scholar
    • Export Citation
  • Mann, M., and Coauthors, 2009: Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326, 1256–1260, doi:10.1126/science.1177303.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 383–464. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter05_FINAL.pdf.]

  • Moberg, A., 2013: Comparisons of simulated and observed Northern Hemisphere temperature variations during the past millennium—Selected lessons learned and problems encountered. Tellus, 65B, 19921, doi:10.3402/tellusb.v65i0.19921.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., R. Sundberg, H. Grudd, and A. Hind, 2015: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium—Part 3: Practical considerations, relaxed assumptions, and using tree-ring data to address the amplitude of solar forcing. Climate Past, 11, 425–448, doi:10.5194/cp-11-425-2015.

    • Search Google Scholar
    • Export Citation
  • Percival, D., and A. Walden, 2000: Wavelet Methods for Time Series Analysis. Cambridge University Press, 594 pp.

  • Phipps, S., and Coauthors, 2013: Paleoclimate data–model comparison and the role of climate forcings over the past 1500 years. J. Climate, 26, 6915–6936, doi:10.1175/JCLI-D-12-00108.1.

    • Search Google Scholar
    • Export Citation
  • Pongratz, J., T. Raddatz, C. Reick, M. Esch, and M. Claussen, 2009: Radiative forcing from anthropogenic land cover change since A.D. 800. Geophys. Res. Lett., 36, L02709, doi:10.1029/2008GL036394.

    • Search Google Scholar
    • Export Citation
  • Sansó, B., C. E. Forest, and D. Zantedeschi, 2008: Inferring climate system properties using a computer model. Bayesian Anal., 3, 1–37, doi:10.1214/08-BA301.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev., 4, doi:10.5194/gmd-4-33-2011.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G., and Coauthors, 2012: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.1). Geosci. Model Dev., 5, 185–191, doi:10.5194/gmd-5-185-2012.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G., and Coauthors, 2014: Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate Past, 10, 221–250, doi:10.5194/cp-10-221-2014.

    • Search Google Scholar
    • Export Citation
  • Simkin, T., and L. Siebert, 1994: Volcanoes of the World: A Regional Directory, Gazetteer, and Chronology of Volcanism during the Last 10,000 Years. 2nd ed. Geoscience Press, 349 pp.

  • Steiger, N. J., G. J. Hakim, E. J. Steig, D. S. Battisti, and G. H. Roe, 2014: Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Climate, 27, 426–441, doi:10.1175/JCLI-D-12-00693.1.

    • Search Google Scholar
    • Export Citation
  • Steinhilber, F., J. Beer, and C. Fröhlich, 2009: Total solar irradiance during the Holocene. Geophys. Res. Lett., 36, L19704, doi:10.1029/2009GL040142.

  • Stine, A. R., and P. Huybers, 2014: Arctic tree rings as recorders of variations in light availability. Nat. Commun., 5, 3836, doi:10.1038/ncomms4836.

    • Search Google Scholar
    • Export Citation
  • Sundberg, R., A. Moberg, and A. Hind, 2012: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium—Part 1: Theory. Climate Past, 8, 1339–1353, doi:10.5194/cp-8-1339-2012.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., and P. Huybers, 2010a: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: Development and applications to paleoclimate reconstruction problems. J. Climate, 23, 2759–2781, doi:10.1175/2009JCLI3015.1.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., and P. Huybers, 2010b: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part II: Comparison with the regularized expectation–maximization algorithm. J. Climate, 23, 2782–2800, doi:10.1175/2009JCLI3016.1.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., and P. Huybers, 2013: Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature, 496, 201–205, doi:10.1038/nature11969.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., P. Craigmile, M. Haran, B. Li, E. Mannshardt, and B. Rajaratnam, 2012: Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev., 35, 1–22, doi:10.1016/j.quascirev.2012.01.012.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., A. R. Stine, and P. Huybers, 2014: Temperature reconstructions from tree-ring densities overestimate volcanic cooling. Geophys. Res. Lett., 41, 7838–7845, doi:10.1002/2014GL061268.

    • Search Google Scholar
    • Export Citation
  • Vieira, L., S. Solanki, N. Krivova, and I. Usoskin, 2011: Evolution of the solar irradiance during the Holocene. Astron. Astrophys., 531, A6, doi:10.1051/0004-6361/201015843.

    • Search Google Scholar
    • Export Citation
  • Werner, J. P., J. Luterbacher, and J. E. Smerdon, 2013: A pseudoproxy evaluation of Bayesian hierarchical modeling and canonical correlation analysis for climate field reconstructions over Europe. J. Climate, 26, 851–867, doi:10.1175/JCLI-D-12-00016.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 239 83 15
PDF Downloads 132 63 1