Characterization of Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010

L. R. Mudryk Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by L. R. Mudryk in
Current site
Google Scholar
PubMed
Close
,
C. Derksen Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Search for other papers by C. Derksen in
Current site
Google Scholar
PubMed
Close
,
P. J. Kushner Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by P. J. Kushner in
Current site
Google Scholar
PubMed
Close
, and
R. Brown Climate Research Division, Environment Canada, Ouranos, Montreal, Quebec, Canada

Search for other papers by R. Brown in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Five, daily, gridded, Northern Hemisphere snow water equivalent (SWE) datasets are analyzed over the 1981–2010 period in order to quantify the spatial and temporal consistency of satellite retrievals, land surface assimilation systems, physical snow models, and reanalyses. While the climatologies of total Northern Hemisphere snow water mass (SWM) vary among the datasets by as much as 50%, their interannual variability and daily anomalies are comparable, showing moderate to good temporal correlations (between 0.60 and 0.85) on both interannual and intraseasonal time scales. Wintertime trends of total Northern Hemisphere SWM are consistently negative over the 1981–2010 period among the five datasets but vary in strength by a factor of 2–3. Examining spatial patterns of SWE indicates that the datasets are most consistent with one another over boreal forest regions compared to Arctic and alpine regions. Additionally, the datasets derived using relatively recent reanalyses are strongly correlated with one another and show better correlations with the satellite product [the European Space Agency (ESA)’s Global Snow Monitoring for Climate Research (GlobSnow)] than do those using older reanalyses. Finally, a comparison of eight reanalysis datasets over the 2001–10 period shows that land surface model differences control the majority of spread in the climatological value of SWM, while meteorological forcing differences control the majority of the spread in temporal correlations of SWM anomalies.

Corresponding author address: L. R. Mudryk, Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada. E-mail: mudryk@atmosp.physics.utoronto.ca

Abstract

Five, daily, gridded, Northern Hemisphere snow water equivalent (SWE) datasets are analyzed over the 1981–2010 period in order to quantify the spatial and temporal consistency of satellite retrievals, land surface assimilation systems, physical snow models, and reanalyses. While the climatologies of total Northern Hemisphere snow water mass (SWM) vary among the datasets by as much as 50%, their interannual variability and daily anomalies are comparable, showing moderate to good temporal correlations (between 0.60 and 0.85) on both interannual and intraseasonal time scales. Wintertime trends of total Northern Hemisphere SWM are consistently negative over the 1981–2010 period among the five datasets but vary in strength by a factor of 2–3. Examining spatial patterns of SWE indicates that the datasets are most consistent with one another over boreal forest regions compared to Arctic and alpine regions. Additionally, the datasets derived using relatively recent reanalyses are strongly correlated with one another and show better correlations with the satellite product [the European Space Agency (ESA)’s Global Snow Monitoring for Climate Research (GlobSnow)] than do those using older reanalyses. Finally, a comparison of eight reanalysis datasets over the 2001–10 period shows that land surface model differences control the majority of spread in the climatological value of SWM, while meteorological forcing differences control the majority of the spread in temporal correlations of SWM anomalies.

Corresponding author address: L. R. Mudryk, Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada. E-mail: mudryk@atmosp.physics.utoronto.ca
Save
  • Balsamo, G., A. Beljaars, and K. Scipal, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surfaces reanalysis data set. Hydrol. Earth Syst. Sci. Discuss., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149, doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and P. W. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 2124–2145, doi:10.1175/2008JCLI2665.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and B. Brasnett, 2010: Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data. National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, doi:10.5067/W9FOYWH0EQZ3.

  • Brown, R. D., and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environ. Res. Lett., 8, 024006, doi:10.1088/1748-9326/8/2/024006.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., C. Derksen, and L. Wang, 2010: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res., 115, D16111, doi:10.1029/2010JD013975.

    • Search Google Scholar
    • Export Citation
  • Brun, E., P. David, M. Sudul, and G. Brunot, 1992: A numerical-model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38, 1322.

    • Search Google Scholar
    • Export Citation
  • Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203219, doi:10.1175/JHM-D-12-012.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., R. H. Reichle, P. R. Houser, K. R. Arsenault, N. E. C. Verhoest, and V. R. N. Pauwels, 2010: Satellite-scale snow water equivalent assimilation into a high-resolution land surface model. J. Hydrometeor., 11, 352369, doi:10.1175/2009JHM1192.1.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., and R. Brown, 2012: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett., 39, L19504, doi:10.1029/2012GL053387.

    • Search Google Scholar
    • Export Citation
  • Drewitt, G., A. A. Berg, W. J. Merryfield, and W. Lee, 2012: Effect of realistic soil moisture initialization on the Canadian CanCM3 seasonal forecast model. Atmos.–Ocean, 50, 466474, doi:10.1080/07055900.2012.722910.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., G. Balsamo, P. Viterbo, P. M. A. Miranda, A. Beljaars, C. Schär, and K. Elder, 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, doi:10.1175/2010JHM1249.1.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., P. Viterbo, P. M. A. Miranda, and G. Balsamo, 2012: Complexity of snow schemes in a climate model and its impact on surface energy and hydrology. J. Hydrometeor., 13, 521538, doi:10.1175/JHM-D-11-072.1.

    • Search Google Scholar
    • Export Citation
  • Jeong, J., H. W. Linderholm, S. Woo, C. Folland, B. Kim, S. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 19561972, doi:10.1175/JCLI-D-12-00159.1.

    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, doi:10.1029/1999JD900232.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1994: The components of a ‘SVAT’ scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour., 17, 6178, doi:10.1016/0309-1708(94)90024-8.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Langlois, A., and Coauthors, 2009: Simulation of snow water equivalent (SWE) using thermodynamic snow models in Québec, Canada. J. Hydrometeor., 10, 14471463, doi:10.1175/2009JHM1154.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., P. J. Kushner, and C. Derksen, 2014: Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations. Climate Dyn., 43, 345359, doi:10.1007/s00382-013-1954-y.

    • Search Google Scholar
    • Export Citation
  • NOAA National Geophysical Data Center, 1988: Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. NOAA, National Geophysical Data Center, Boulder, CO. [Available online at http://www.ngdc.noaa.gov/mgg/global/etopo5.html.]

  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 19691982, doi:10.1007/s00382-013-1782-0.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. de Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and H. K. Beaudoing, 2007a: GLDAS CLM Land Surface Model L4 3 Hourly 1.0 × 1.0 degree subsetted, version 001. Goddard Earth Sciences Data and Information Services Center (GES DISC), NASA/GSFC/HSL, accessed 5 August 2014, doi:10.5067/83NO2QDLG6M0.

  • Rodell, M., and H. K. Beaudoing, 2007b: GLDAS Mosaic Land Surface Model L4 3 Hourly 1.0 x 1.0 degree subsetted, version 001. Goddard Earth Sciences Data and Information Services Center (GES DISC), NASA/GSFC/HSL, accessed 5 August 2014, doi:10.5067/DLVU8VOPKN7L.

  • Rodell, M., and H. K. Beaudoing, 2007c: GLDAS Noah Land Surface Model L4 3 Hourly 1.0 × 1.0 degree subsetted, version 001. Goddard Earth Sciences Data and Information Services Center (GES DISC), NASA/GSFC/HSL, accessed 10 January 2014, doi:10.5067/7J0CPW2PF9N9.

  • Rodell, M., and H. K. Beaudoing, 2007d: GLDAS VIC Land Surface Model L4 3 Hourly 1.0 × 1.0 degree, version 001. Goddard Earth Sciences Data and Information Services Center (GES DISC), NASA/GSFC/HSL, accessed 5 August 2014, doi:10.5067/Z7SA0KYUTBQS.

  • Rodell, M., and H. K. Beaudoing, 2013: GLDAS Noah Land Surface Model L4 3 Hourly 1.0 × 1.0 degree, version 2.0. Goddard Earth Sciences Data and Information Services Center (GES DISC), NASA/GSFC/HSL, accessed 23 January 2014. [Available online at http://disc.sci.gsfc.nasa.gov/datacollection/GLDAS_NOAH10_3H_V020.shtml.]

  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., A. Ducharne, K. Koster, and M. Suarez, 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242, doi:10.1175/1525-7541(2001)002<0228:TIODSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., J. Holmgren, and G. E. Liston, 1995: A seasonal snow cover classification system for local to global applications. J. Climate, 8, 12611283, doi:10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takala, M., K. Luojus, J. Pulliainen, C. Derksen, L. Lemmetyinen, J.-P. Kärnä, and J. Koskinen, 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 3517–3529, doi:10.1016/j.rse.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Tong, J., S. J. Déry, P. L. Jackson, and C. Derksen, 2010: Testing snow water equivalent retrieval algorithms for passive microwave remote sensing in an alpine watershed of western Canada. Can. J. Remote Sens., 36, S74S86, doi:10.5589/m10-009.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2013: Observations: Cryosphere. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 317–382.

  • Wang, Z., X. Zeng, and M. Decker, 2010: Improving snow processes in the Noah land model. J. Geophys. Res., 115, D20108, doi:10.1029/2009JD013761.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1705 392 60
PDF Downloads 1324 303 34