• Allen, M. R., , D. J. Frame, , C. Huntingford, , C. D. Jones, , J. A. Lowe, , M. Meinshausen, , and N. Meinshausen, 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 11631166, doi:10.1038/nature08019.

    • Search Google Scholar
    • Export Citation
  • Archer, D., 2005: Fate of fossil fuel CO2 in geologic time. J. Geophys. Res., 110, C09S05, doi:10.1029/2004JC002625.

  • Arora, V. K., and et al. , 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 earth system models. J. Climate, 26, 52895314, doi:10.1175/JCLI-D-12-00494.1.

    • Search Google Scholar
    • Export Citation
  • Blanco, G., and et al. , 2014: Drivers, trends and mitigation. Climate Change 2014: Mitigation of Climate Change, O. Edenhofer et al., Eds., Cambridge University Press, 351–412.

  • Bowerman, N. H. A., , D. J. Frame, , C. Huntingford, , J. A. Lowe, , and M. R. Allen, 2011: Cumulative carbon emissions, emissions floors and short-term rates of warming: Implications for policy. Philos. Trans. Roy. Soc. London, 369A, 4566, doi:10.1098/rsta.2010.0288.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cox, P. M., 2001: Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre Tech. Note HCTN24, 16 pp.

  • Cox, P. M., , R. A. Betts, , C. B. Bunton, , R. L. H. Essery, , P. R. Rowntree, , and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203, doi:10.1007/s003820050276.

    • Search Google Scholar
    • Export Citation
  • Eby, M., , K. Zickfeld, , A. Montenegro, , D. Archer, , K. J. Meissner, , and A. J. Weaver, 2009: Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J. Climate, 22, 25012511, doi:10.1175/2008JCLI2554.1.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and et al. , 2014: Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci., 7, 709715, doi:10.1038/ngeo2248.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., , and D. J. Paynter, 2015: Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ. Res. Lett., 10, 075002, doi:10.1088/1748-9326/10/7/075002.

  • Gillett, N. P., , V. K. Arora, , H. D. Matthews, , and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 68446858, doi:10.1175/JCLI-D-12-00476.1.

    • Search Google Scholar
    • Export Citation
  • Goodwin, P., , R. G. Williams, , and A. Ridgwell, 2015: Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat. Geosci., 8, 2934, doi:10.1038/ngeo2304.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Kaya, Y., 1990: Impact of carbon dioxide emission control on GNP growth: Interpretation of proposed scenarios. Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris, France.

  • Krasting, J. P., , J. P. Dunne, , E. Shevliakova, , and R. J. Stouffer, 2014: Trajectory sensitivity of the transient climate response to cumulative carbon emissions. Geophys. Res. Lett., 41, 25202527, doi:10.1002/2013GL059141.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and et al. , 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836, doi:10.1038/ngeo689.

    • Search Google Scholar
    • Export Citation
  • Li, W., , Q. Ou, , and Y. Chen, 2014: Decomposition of China’s CO2 emissions from agriculture utilizing an improved Kaya identity. Environ. Sci. Pollut. Res., 21, 13 00013 006, doi:10.1007/s11356-014-3250-8.

    • Search Google Scholar
    • Export Citation
  • Lowe, J. A., , C. Huntingford, , S. C. B. Raper, , C. D. Jones, , S. K. Liddicoat, , and L. K. Gohar, 2009: How difficult is it to recover from dangerous levels of global warming? Environ. Res. Lett., 4, 014012, doi:10.1088/1748-9326/4/1/014012.

  • Matthews, H. D., , and K. Caldeira, 2008: Stabilizing climate requires near-zero emissions. Geophys. Res. Lett., 35, L04705, doi:10.1029/2007GL032388.

  • Matthews, H. D., , N. P. Gillett, , P. A. Stott, , and K. Zickfeld, 2009: The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829832, doi:10.1038/nature08047.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., , S. Solomon, , and R. Pierrehumbert, 2012: Cumulative carbon as a policy framework for achieving climate stabilization. Philos. Trans. Roy. Soc. London, 370A, 43654379, doi:10.1098/rsta.2012.0064.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and et al. , 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., , A. J. Weaver, , H. D. Matthews, , and P. M. Cox, 2003: The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Climate Dyn., 21, 515537, doi:10.1007/s00382-003-0352-2.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., , and R. Swart, Eds., 2000: IPCC Special Report on Emissions Scenarios. Cambridge University Press, 599 pp. [Available online at http://www.ipcc.ch/ipccreports/sres/emission/emissions_scenarios.pdf.]

  • Ramanathan, V., and et al. , 1987: Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys., 25, 14411482, doi:10.1029/RG025i007p01441.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., , G. Marland, , P. Ciais, , C. Le Qur, , J. G. Canadell, , G. Klepper, , and C. B. Field, 2007: Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA, 104, 10 28810 293, doi:10.1073/pnas.0700609104.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , A. Oschlies, , H. D. Matthews, , and E. D. Galbraith, 2008: Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem. Cycles, 22, GB1013, doi:10.1029/2007GB002953.

  • Shlyakhter, A., , L. James, , A. Valverde Jr., , and R. Wilson, 1995: Integrated risk analysis of global climate change. Chemosphere, 30, 15851618, doi:10.1016/0045-6535(95)00032-4.

    • Search Google Scholar
    • Export Citation
  • Sokolov, A., and et al. , 2005: The MIT Integrated Global System Model (IGSM) version 2: Model description and baseline evaluation. MIT Joint Program on the Science and Policy of Global Change Tech. Rep. 124, 46 pp.

  • Solomon, S., , G.-K. Plattner, , R. Knutti, , and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 106, 1704–1709, doi:10.1073/pnas.0812721106.

  • Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17, 209217, doi:10.1175/1520-0442(2004)017<0209:TSOCR>2.0.CO;2.

  • Weaver, A. J., and et al. , 2001: The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39, 361428, doi:10.1080/07055900.2001.9649686.

    • Search Google Scholar
    • Export Citation
  • Winton, M., , S. M. Griffies, , B. L. Samuels, , J. L. Sarmiento, , and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, doi:10.1175/JCLI-D-12-00296.1.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., , M. Eby, , H. D. Matthews, , A. Schmittner, , and A. J. Weaver, 2011: Nonlinearity of carbon cycle feedbacks. J. Climate, 24, 42554275, doi:10.1175/2011JCLI3898.1.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., , V. K. Arora, , and N. P. Gillett, 2012: Is the climate response to CO2 emissions path dependent? Geophys. Res. Lett., 39, L05703, doi:10.1029/2011GL050205.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 31
PDF Downloads 107 107 25

Quantifying the Limits of a Linear Temperature Response to Cumulative CO2 Emissions

View More View Less
  • 1 Concordia University, and Ouranos, Montreal, Quebec, Canada
  • | 2 Concordia University, Montreal, Quebec, Canada
  • | 3 Ouranos, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

Recent studies have shown that the transient climate response to cumulative carbon emissions (TCRE) of the global temperature can be well approximated by a constant value for cumulative emissions up to about 2 TtC. However, there has been little attention given in the literature to how the TCRE varies across the range of emissions rates represented by the current RCP emissions scenarios. The authors use an ensemble of simulations generated using the University of Victoria Earth System Climate Model to quantify how the temperature response to cumulative emissions varies as a function of both the total magnitude and the rate of CO2 emissions. This study shows that the 500-yr response to a pulse CO2 emission (1.81°C TtC−1) does not depend on the magnitude of cumulative emissions up to 3 TtC. The TCRE (1.66°C TtC−1), which relates to the short-term response, is relatively insensitive to constant-rate emissions up to 30 GtC yr−1. This experiment shows that the formal way of estimating the TCRE—that is, at the point of CO2 doubling in an idealized scenario with a 1% yr−1 increase of the atmospheric concentration—is a highly robust measure. The authors conclude that the TCRE provides a good estimate of the temperature response to CO2 emissions in RCP scenarios 2.6, 4.5, and 6, whereas a constant TCRE value significantly overestimates the temperature response to CO2 emissions in RCP8.5.

Corresponding author address: Martin Leduc, Ouranos, 550 Sherbrooke West, West Tower, 19th Fl., Montreal QC H3A 1B9, Canada. E-mail: leduc.martin@ouranos.ca

Abstract

Recent studies have shown that the transient climate response to cumulative carbon emissions (TCRE) of the global temperature can be well approximated by a constant value for cumulative emissions up to about 2 TtC. However, there has been little attention given in the literature to how the TCRE varies across the range of emissions rates represented by the current RCP emissions scenarios. The authors use an ensemble of simulations generated using the University of Victoria Earth System Climate Model to quantify how the temperature response to cumulative emissions varies as a function of both the total magnitude and the rate of CO2 emissions. This study shows that the 500-yr response to a pulse CO2 emission (1.81°C TtC−1) does not depend on the magnitude of cumulative emissions up to 3 TtC. The TCRE (1.66°C TtC−1), which relates to the short-term response, is relatively insensitive to constant-rate emissions up to 30 GtC yr−1. This experiment shows that the formal way of estimating the TCRE—that is, at the point of CO2 doubling in an idealized scenario with a 1% yr−1 increase of the atmospheric concentration—is a highly robust measure. The authors conclude that the TCRE provides a good estimate of the temperature response to CO2 emissions in RCP scenarios 2.6, 4.5, and 6, whereas a constant TCRE value significantly overestimates the temperature response to CO2 emissions in RCP8.5.

Corresponding author address: Martin Leduc, Ouranos, 550 Sherbrooke West, West Tower, 19th Fl., Montreal QC H3A 1B9, Canada. E-mail: leduc.martin@ouranos.ca
Save