• Ardhuin, F., and et al. , 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, doi:10.1175/2010JPO4324.1.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., , J. Hanafin, , Y. Quilfen, , B. Chapron, , P. Queffeulou, , M. Obrebski, , J. Sienkiewicz, , and D. Vandemark, 2011: Calibration of the “IOWAGA” global wave hindcast (1991–2011) using ECMWF and CFSR winds. Proc. 12th Int. Workshop on Wave Hindcasting and Forecasting/Third Coastal Hazard Symp., Kohala Coast, HI, JCOMM, I17. [Available online at http://www.jcomm.info/images/stories/2011/12thWaves/Papers/ardhuin_etal_hindcast_whf2011.pdf.]

  • Bromirski, P. D., , and J. P. Kossin, 2008: Increasing hurricane wave power along the U.S. Atlantic and Gulf Coasts. J. Geophys. Res., 113, C07012, doi:10.1029/2007JC004706.

    • Search Google Scholar
    • Export Citation
  • Bromirski, P. D., , D. R. Cayan, , J. Helly, , and P. Wittmann, 2013: Wave power variability and trends across the North Pacific. J. Geophys. Res. Oceans, 118, 63296348, doi:10.1002/2013JC009189.

    • Search Google Scholar
    • Export Citation
  • Chao, Y. Y., , and H. L. Tolman, 2010: Performance of NCEP regional wave models in predicting peak sea states during the 2005 North Atlantic hurricane season. Wea. Forecasting, 25, 15431567, doi:10.1175/2010WAF2222309.1.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., , B. J. Soden, , and B. P. Kirtman, 2015: The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Climate, 28, 18061823, doi:10.1175/JCLI-D-14-00100.1.

    • Search Google Scholar
    • Export Citation
  • Cooley, D., , D. Nychka, , and P. Naveau, 2007: Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Stat. Assoc., 102, 824840, doi:10.1198/016214506000000780.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Endo, H., , A. Kitoh, , T. Ose, , R. Mizuta, , and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi–sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, D16118, doi:10.1029/2012JD017874.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., , I. M. Held, , S.-J. Lin, , and X. L. Wang, 2013: Ocean warming effect on surface gravity wave climate change for the end of the 21st century. J. Climate, 26, 60466066, doi:10.1175/JCLI-D-12-00410.1.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., , and H. F. Diaz, 2001: Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Amer. Meteor. Soc., 82, 18691893, doi:10.1175/1520-0477(2001)082<1869:EFIONP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., 2010: Historical trends in Southern Ocean storminess: Long-term variability of extreme wave heights at Cape Sorell, Tasmania. Geophys. Res. Lett., 37, L18601, doi:10.1029/2010GL044595.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., , Y. Fan, , N. Mori, , A. Semedo, , and X. Wang, 2013: Projected changes in wave climate from a multi-model ensemble. Nat. Climate Change, 3, 471476, doi:10.1038/nclimate1791.

    • Search Google Scholar
    • Export Citation
  • Hosking, J., , and J. Wallis, 1997: Regional Frequency Analysis. Cambridge University Press, 244 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Komar, P. D., , and J. C. Allan, 2008: Increasing hurricane-generated wave heights along the U.S. East Coast and their climate controls. J. Coastal Res., 24, 479488, doi:10.2112/07-0894.1.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and et al. , 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, doi:10.1175/JCLI-D-11-00346.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Menéndez, M., , F. Méndez, , I. Losada, , and N. Graham, 2008: Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys. Res. Lett., 35, L22607, doi:10.1029/2008GL035394.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and et al. , 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233258, doi:10.2151/jmsj.2012-A12.

    • Search Google Scholar
    • Export Citation
  • Moore, L. J., , D. E. McNamara, , A. B. Murray, , and O. Brenner, 2013: Observed changes in hurricane-driven waves explain the dynamics of modern cuspate shorelines. Geophys. Res. Lett., 40, 58675871, doi:10.1002/2013GL057311.

    • Search Google Scholar
    • Export Citation
  • Mori, N., , T. Yasuda, , H. Mase, , T. Tom, , and Y. Oku, 2010: Projection of extreme wave climate change under global warming. Hydrol. Res. Lett., 4, 1519, doi:10.3178/hrl.4.15.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., 2014: Tropical cyclones in reanalysis data sets. Geophys. Res. Lett., 41, 21332141, doi:10.1002/2014GL059519.

  • Murakami, H., , and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376, doi:10.2151/sola.2010-019.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , R. Mizuta, , and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, doi:10.1007/s00382-011-1223-x.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, P., , P. D. Komar, , and J. C. Allan, 2010: Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coastal Eng., 57, 539552, doi:10.1016/j.coastaleng.2009.12.005.

    • Search Google Scholar
    • Export Citation
  • Sasaki, W., , S. Iwasaki, , T. Matsuura, , and S. Iizuka, 2005: Recent increase in summertime extreme wave heights in the western North Pacific. Geophys. Res. Lett., 32, L15607, doi:10.1029/2005GL023722.

    • Search Google Scholar
    • Export Citation
  • Shimura, T., , N. Mori, , and H. Mase, 2015: Future projection of ocean wave climate: Analysis of SST impacts on wave climate changes in the western North Pacific. J. Climate, 28, 31713190, doi:10.1175/JCLI-D-14-00187.1.

    • Search Google Scholar
    • Export Citation
  • Slott, J. M., , A. B. Murray, , A. D. Ashton, , and T. J. Crowley, 2006: Coastline responses to changing storm patterns. Geophys. Res. Lett., 33, L18404, doi:10.1029/2006GL027445.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., , and S. Caires, 2005: Climatology, variability and extrema of ocean waves: The web-based KNMI/ERA-40 wave atlas. Int. J. Climatol., 25, 963977, doi:10.1002/joc.1175.

    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., , and K. F. Cheung, 2014: Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Modell., 75, 6583, doi:10.1016/j.ocemod.2013.12.006.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III version 3.14. MMAB Tech. Note 276, 220 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.]

  • Tolman, H. L., 2014: User manual and system documentation of WAVEWATCH III version 4.18. MMAB Tech. Note, 311 pp. [Available online at http://polar.ncep.noaa.gov/waves/wavewatch/manual.v4.18.pdf.]

  • Tolman, H. L., , and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, doi:10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., , and J.-H. G. Alves, 2005: Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell., 9, 305323, doi:10.1016/j.ocemod.2004.09.003.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, X. L., , and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14, 22042221, doi:10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., , and V. R. Swail, 2006: Climate change signal and uncertainty in projections of ocean wave heights. Climate Dyn., 26, 109126, doi:10.1007/s00382-005-0080-x.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., , V. R. Swail, , F. W. Zwiers, , X. Zhang, , and Y. Feng, 2009: Detection of external influence on trends of atmospheric storminess and northern oceans wave heights. Climate Dyn., 32, 189203, doi:10.1007/s00382-008-0442-2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., , Y. Feng, , and V. R. Swail, 2014: Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys. Res. Lett., 41, 10261034, doi:10.1002/2013GL058650.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698, doi:10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , B. Wang, , and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Yokoi, S., , Y. Takayabu, , and H. Murakami, 2013: Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Climate, 26, 40964111, doi:10.1175/JCLI-D-12-00218.1.

    • Search Google Scholar
    • Export Citation
  • Yong, H., , Y. Baoshu, , W. Perrie, , and H. Yijun, 2008: Responses of summertime extreme wave heights to local climate variations in the East China Sea. J. Geophys. Res., 113, C09031, doi:10.1029/2008JC004732.

    • Search Google Scholar
    • Export Citation
  • Young, I., , S. Zieger, , and A. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, doi:10.1126/science.1197219.

    • Search Google Scholar
    • Export Citation
  • Young, I., , J. Vinoth, , S. Zieger, , and A. Babanin, 2012: Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res., 117, C00J06, doi:10.1029/2011JC007753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 12
PDF Downloads 67 67 11

Future Projections of Extreme Ocean Wave Climates and the Relation to Tropical Cyclones: Ensemble Experiments of MRI-AGCM3.2H

View More View Less
  • 1 Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

Future projections of extreme ocean surface wave climates were carried out with single-model ensemble experiments of the atmospheric global climate model MRI-AGCM3.2H. The ensemble experiments of MRI-AGCM3.2H consist of four future sea surface temperature (SST) ensembles and three perturbed physics (PP) ensembles. This study showed that future changes in extreme wave heights strongly depend on the global climate model (GCM) performance to simulate tropical cyclones (TCs), indicating a need to acknowledge that results in a study that employs a low-performance model are not able to account for extreme waves associated with TCs (TC waves). The spatial distribution of future changes in non-TC extreme wave heights on the global scale was similar to that for mean wave heights; namely, wave heights increase over the middle-to-high latitudes in the Southern Ocean and central North Pacific and decrease over midlatitudes and the North Atlantic, although the magnitude of future changes for extreme wave heights is greater than for mean wave heights. The variance of future changes mainly depends on differences in physics among PP ensemble experiments rather than differences in SST ensembles. The 10-yr return wave heights of TC waves over the western North Pacific showed either an increase or a decrease of 30% for different regions, maximally. The spatial distribution of future changes in TC waves can be explained by an eastward shift of TC tracks.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00711.s1.

Corresponding author address: Tomoya Shimura, Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. E-mail: shimura@storm.dpri.kyoto-u.ac.jp

Abstract

Future projections of extreme ocean surface wave climates were carried out with single-model ensemble experiments of the atmospheric global climate model MRI-AGCM3.2H. The ensemble experiments of MRI-AGCM3.2H consist of four future sea surface temperature (SST) ensembles and three perturbed physics (PP) ensembles. This study showed that future changes in extreme wave heights strongly depend on the global climate model (GCM) performance to simulate tropical cyclones (TCs), indicating a need to acknowledge that results in a study that employs a low-performance model are not able to account for extreme waves associated with TCs (TC waves). The spatial distribution of future changes in non-TC extreme wave heights on the global scale was similar to that for mean wave heights; namely, wave heights increase over the middle-to-high latitudes in the Southern Ocean and central North Pacific and decrease over midlatitudes and the North Atlantic, although the magnitude of future changes for extreme wave heights is greater than for mean wave heights. The variance of future changes mainly depends on differences in physics among PP ensemble experiments rather than differences in SST ensembles. The 10-yr return wave heights of TC waves over the western North Pacific showed either an increase or a decrease of 30% for different regions, maximally. The spatial distribution of future changes in TC waves can be explained by an eastward shift of TC tracks.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00711.s1.

Corresponding author address: Tomoya Shimura, Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. E-mail: shimura@storm.dpri.kyoto-u.ac.jp

Supplementary Materials

    • Supplemental Materials (PDF 647.09 KB)
Save