• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., , and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, doi:10.1175/JCLI3774.1.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., , and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , J. P. Nicolas, , A. J. Monaghan, , M. A. Lazzara, , L. M. Keller, , G. A. Weidner, , and A. B. Wilson, 2013: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139145, doi:10.1038/ngeo1671.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., , P. Gloersen, , and W. J. Campbell, 1984: Determination of sea ice parameters with the Nimbus 7 SMMR. J. Geophys. Res., 89, 53555369, doi:10.1029/JD089iD04p05355.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., , C. L. Parkinson, , N. DiGirolamo, , and A. Ivanoff, 2012: Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Geosci. Remote Sens. Lett., 9, 233236, doi:10.1109/LGRS.2011.2166754.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , S.-P. Xie, , and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , V. Bourdette, , and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Ding, H., , R. J. Greatbatch, , and G. Gollan, 2014: Tropical influence independent of ENSO on the austral summer southern annular mode. Geophys. Res. Lett., 41, 36433648, doi:10.1002/2014GL059987.

    • Search Google Scholar
    • Export Citation
  • Ding, H., , R. J. Greatbatch, , and G. Gollan, 2015: Tropical impact on the interannual variability and long-term trend of the southern annular mode during austral summer from 1960/1961 to 2001/2002. Climate Dyn., 44, 22152228, doi:10.1007/s00382-014-2299-x.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , and E. J. Steig, 2013: Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Climate, 26, 75707585, doi:10.1175/JCLI-D-12-00729.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , E. J. Steig, , D. S. Battisti, , and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , E. J. Steig, , D. S. Battisti, , and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, doi:10.1175/JCLI-D-11-00523.1.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., , W. N. Meier, , and J. R. Norris, 2014: A spurious jump in the satellite record: Has Antarctic sea ice expansion been overestimated? Cryosphere, 8, 12891296, doi:10.5194/tc-8-1289-2014.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000a: Is interannual zonal mean flow variability simply climate noise? J. Climate, 13, 23562362, doi:10.1175/1520-0442(2000)013<2356:IIZMFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000b: Teleconnections and ENSO: The timescale, power spectra, and climate noise properties. J. Climate, 13, 44304440, doi:10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., , T. N. Palmer, , F. Molteni, , and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, doi:10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., , and Y.-J. Kim, 2013: Interaction between the MJO and polar circulations. J. Climate, 26, 35623574, doi:10.1175/JCLI-D-11-00508.1.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., , D. H. Bromwich, , and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, doi:10.1007/s00382-010-0905-0.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62, 32503267, doi:10.1175/JAS3536.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , L. M. Polvani, , and D. Ancukiewicz, 2008: Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett., 35, L22707, doi:10.1029/2008GL035712.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , and K.-C. Mo, 1991: Intraseasonal oscillations in the global atmosphere. Part II: Southern Hemisphere. J. Atmos. Sci., 48, 780790, doi:10.1175/1520-0469(1991)048<0780:IOITGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gong, T., , S. B. Feldstein, , and D. Luo, 2013: A simple GCM study on the relationship between ENSO and the southern annular mode. J. Atmos. Sci., 70, 18211832, doi:10.1175/JAS-D-12-0161.1.

    • Search Google Scholar
    • Export Citation
  • Hande, L. B., , S. T. Siems, , and M. J. Manton, 2012: Observed trends in wind speed over the Southern Ocean. Geophys. Res. Lett., 39, L11802, doi:10.1029/2012GL051734.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., , and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, doi:10.3354/cr022013.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., , and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , and H. van Loon, 1994: A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus, 46A, 325338, doi:10.1034/j.1600-0870.1994.t01-1-00007.x.

    • Search Google Scholar
    • Export Citation
  • Jin, D., , and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, doi:10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Johnson, N. C., , and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, doi:10.1175/2009JCLI3099.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., , S. B. Feldstein, , and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, doi:10.1175/2008JCLI2380.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., , D. C. Collins, , S. B. Feldstein, , M. L. L’Heureux, , and E. E. Riddle, 2014: Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Wea. Forecasting, 29, 2338, doi:10.1175/WAF-D-13-00102.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, doi:10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. Springer, 501 pp.

  • Lau, K.-M., , P.-J. Sheu, , and I.-S. Kang, 1994: Multiscale low-frequency circulation modes in the global atmosphere. J. Atmos. Sci., 51, 11691193, doi:10.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, doi:10.1126/science.1225154.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , T. Gong, , N. Johnson, , S. Feldstein, , and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, doi:10.1175/2011JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050, doi:10.1175/2007JCLI1955.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., , D. M. Holland, , E. P. Gerber, , and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, doi:10.1038/nature12945.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, doi:10.1175/2008JCLI2515.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , R. H. Weisberg, , and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, doi:10.1029/2005JC003117.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , and M. P. Meredith, 2004: Variability of Antarctic circumpolar transport and the southern annular mode associated with the Madden–Julian oscillation. Geophys. Res. Lett., 31, L24312, doi:10.1029/2004GL021666.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , B. J. Hoskins, , and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. W. Hurrell, , and H. van Loon, 1998: A modulation of the mechanism of the semiannual oscillation in the Southern Hemisphere. Tellus, 50A, 442450, doi:10.1034/j.1600-0870.1998.t01-3-00005.x.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between interdecadal variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877902.

  • Mo, K. C., , and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, doi:10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21, 12111229, doi:10.1002/joc.685.

    • Search Google Scholar
    • Export Citation
  • Mori, M., , and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, doi:10.2151/jmsj.86.213.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oliveira, F. N. M., , L. M. V. Carvalho, , and T. Ambrizzi, 2014: A new climatology for Southern Hemisphere blockings in the winter and the combined effect of ENSO and SAM phases. Int. J. Climatol., 34, 16761692, doi:10.1002/joc.3795.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , G. J. P. Correa, , and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., , R. B. Alley, , and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, doi:10.1080/789610199.

    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., , R. B. Alley, , and B. C. Hewitson, 2007: North Atlantic climate variability from a self-organizing map perspective. J. Geophys. Res., 112, D02104, doi:10.1029/2006JD007460.

    • Search Google Scholar
    • Export Citation
  • Revell, M. J., , J. W. Kidson, , and G. N. Kiladis, 2001: Interpreting low-frequency modes of Southern Hemisphere atmospheric variability as the rotational response to divergent forcing. Mon. Wea. Rev., 129, 24162425, doi:10.1175/1520-0493(2001)129<2416:ILFMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., , M. B. Stoner, , N. C. Johnson, , M. L. L’Heureux, , D. C. Collins, , and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, doi:10.1007/s00382-012-1493-y.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., , and C. R. Mechoso, 2003: Circulation regimes and low-frequency oscillations in the South Pacific sector. Mon. Wea. Rev., 131, 15661576, doi:10.1175//2548.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , T. M. L. Wigley, , and P. D. Jones, 1993: Correlation methods in fingerprint detection studies. Climate Dyn., 8, 265276, doi:10.1007/BF00209666.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., , Y. Okumura, , and C. Deser, 2012: Observed Antarctic interannual climate variability and tropical linkages. J. Climate, 25, 40484066, doi:10.1175/JCLI-D-11-00273.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2011: Sudden increase in Antarctic sea ice: Fact or artifact? Geophys. Res. Lett., 38, L13702, doi:10.1029/2011GL047553.

  • Screen, J. A., , and I. Simmonds, 2012: Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions. J. Geophys. Res., 117, D16108, doi:10.1029/2012JD017885.

    • Search Google Scholar
    • Export Citation
  • Singh, D., and et al. , 2014: Severe precipitation in northern India in June 2013: Causes, historical context, and changes in probability [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95, S58S61.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , D. G. Martinson, , R. C. Smith, , X. Yuan, , and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., , D. P. Schneider, , S. D. Rutherford, , M. E. Mann, , J. C. Comiso, , and D. T. Shindell, 2009: Warming of the Antarctic ice sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462, doi:10.1038/nature07669.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and E. A. Barnes, 2014: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641645, doi:10.1126/science.1247660.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. D. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 14801493, doi:10.1175/JAS-D-13-0185.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , T. J. Bracegirdle, , T. Phillips, , G. J. Marshall, , and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, doi:10.1175/JCLI-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , T. M. Smith, , and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612, doi:10.1175/1520-0442-16.10.1601.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., , S. Lee, , and S. B. Feldstein, 2012a: The impact of the Madden–Julian oscillation trend on the Antarctic warming during the 1979–2008 austral winter. Atmos. Sci. Lett., 13, 194199, doi:10.1002/asl.379.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., , S. Lee, , and S. B. Feldstein, 2012b: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, doi:10.1175/JCLI-D-11-00566.1.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., , S. Zieger, , and A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, doi:10.1126/science.1197219.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 9
PDF Downloads 21 21 6

The Continuum of Wintertime Southern Hemisphere Atmospheric Teleconnection Patterns

View More View Less
  • 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
  • | 2 International Pacific Research Center, SOEST, University of Hawai‘i at Mānoa, Honolulu, Hawaii, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and
  • | 3 Cooperative Institute for Climate Science, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

This study uses the method of self-organizing maps (SOMs) to categorize the June–August atmospheric teleconnections in the 500-hPa geopotential height field of the Southern Hemisphere (SH) extratropics. This approach yields 12 SOM patterns that provide a discretized representation of the continuum of SH teleconnection patterns from 1979 to 2012. These 12 patterns are large in spatial scale, exhibiting a mix of annular mode characteristics and wave trains of zonal wavenumber varying from 2 to 4. All patterns vary with intrinsic time scales of about 5–10 days, but some patterns exhibit quasi-oscillatory behavior over a period of 20–30 days, whereas still others exhibit statistically significant enhanced and suppressed frequencies up to about four weeks in association with the Madden–Julian oscillation. Two patterns are significantly influenced by El Niño–Southern Oscillation (ENSO) on interannual time scales. All 12 patterns have strong influences on surface air temperature and sea ice concentrations, with the sea ice response occurring over a time scale of about 2–4 weeks. The austral winter has featured a positive frequency trend in patterns that project onto the negative phase of the southern annular mode (SAM) and a negative frequency trend in positive SAM-like patterns. Such atmospheric circulation trends over 34 yr may arise through atmospheric internal variability alone, and, unlike other seasons in the SH, it is not necessary to invoke external forcing as a dominant source of circulation trends.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00739.s1.

International Pacific Research Center Publication Number 1125.

Corresponding author address: Chueh-Hsin Chang, Research Center for Environmental Changes, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang Taipei 115, Taiwan. E-mail: shingchang@gate.sinica.edu.tw

Abstract

This study uses the method of self-organizing maps (SOMs) to categorize the June–August atmospheric teleconnections in the 500-hPa geopotential height field of the Southern Hemisphere (SH) extratropics. This approach yields 12 SOM patterns that provide a discretized representation of the continuum of SH teleconnection patterns from 1979 to 2012. These 12 patterns are large in spatial scale, exhibiting a mix of annular mode characteristics and wave trains of zonal wavenumber varying from 2 to 4. All patterns vary with intrinsic time scales of about 5–10 days, but some patterns exhibit quasi-oscillatory behavior over a period of 20–30 days, whereas still others exhibit statistically significant enhanced and suppressed frequencies up to about four weeks in association with the Madden–Julian oscillation. Two patterns are significantly influenced by El Niño–Southern Oscillation (ENSO) on interannual time scales. All 12 patterns have strong influences on surface air temperature and sea ice concentrations, with the sea ice response occurring over a time scale of about 2–4 weeks. The austral winter has featured a positive frequency trend in patterns that project onto the negative phase of the southern annular mode (SAM) and a negative frequency trend in positive SAM-like patterns. Such atmospheric circulation trends over 34 yr may arise through atmospheric internal variability alone, and, unlike other seasons in the SH, it is not necessary to invoke external forcing as a dominant source of circulation trends.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00739.s1.

International Pacific Research Center Publication Number 1125.

Corresponding author address: Chueh-Hsin Chang, Research Center for Environmental Changes, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang Taipei 115, Taiwan. E-mail: shingchang@gate.sinica.edu.tw

Supplementary Materials

    • Supplemental Materials (DOC 13.68 MB)
Save