• Aiken, C. M., , and M. H. England, 2008: Sensitivity of the present-day climate to freshwater forcing associated with Antarctic sea ice loss. J. Climate, 21, 39363946, doi:10.1175/2007JCLI1901.1.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., , D. Seidov, , T. P. Boyer, , R. A. Locarnini, , A. V. Mishonov, , and H. E. Garcia, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Bintanja, R., , G. J. van Oldenborgh, , S. S. Drijfhout, , B. Wouters, , and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, doi:10.1029/2012GL053393.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , D. S. Battisti, , R. E. Moritz, , and J. A. Beesley, 1996: Low-frequency variability in the Arctic atmosphere, sea ice, and upper-ocean climate system. J. Climate, 9, 394408, doi:10.1175/1520-0442(1996)009<0394:LFVITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , M. M. Holland, , A. J. Weaver, , and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 24412463, doi:10.1029/1999JC000113.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , P. R. Gent, , R. A. Woodgate, , M. M. Holland, , and R. Lindsay, 2006: The influence of sea ice on ocean heat uptake in response to increasing CO2. J. Climate, 19, 24372450, doi:10.1175/JCLI3756.1.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , J. K. Ridley, , M. Holland, , and H. Cattle, 2012: Global climate models and 20th and 21st century Arctic climate change. Arctic Climate Change, P. Lemke and H.-W. Jacobi, Eds., Springer, 405–436, doi:10.1007/978-94-007-2027-5_11.

  • Blanchard-Wrigglesworth, E., , K. C. Armour, , C. M. Bitz, , and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, doi:10.1175/2010JCLI3775.1.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2009: World Ocean Atlas 2009. NOAA Atlas NESDIS 66, 219 pp.

  • Broccoli, A. J., , and S. Manabe, 1987: The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dyn., 1, 8799, doi:10.1007/BF01054478.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: Climate and the ocean circulation. III. The ocean model. Mon. Wea. Rev., 97, 806827, doi:10.1175/1520-0493(1969)097<0806:CATOC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burke, E. J., , W. J. Shuttleworth, , Z. L. Yang, , S. L. Mullen, , and M. A. Arain, 2000: The impact of the parameterization of heterogeneous vegetation on the modeled large-scale circulation in CCM3-BATS. Geophys. Res. Lett., 27, 397400, doi:10.1029/1999GL010920.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L., , C. Jones, , and T. Ambrizzi, 2005: Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J. Climate, 18, 702718, doi:10.1175/JCLI-3284.1.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., , C. L. Parkinson, , P. Gloersen, , and H. J. Zwally, 1997: Arctic and Antarctic sea ice concentrations from multichannel passive-microwave satellite data sets: User’s guide. NASA Tech. Memo. 104647, 21 pp.

  • Cavalieri, D. J., , C. L. Parkinson, , P. Gloersen, , J. C. Comiso, , and H. J. Zwally, 1999: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104, 15 80315 814, doi:10.1029/1999JC900081.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , and X. Yuan, 2004: A Markov model for seasonal forecast of Antarctic sea ice. J. Climate, 17, 31563168, doi:10.1175/1520-0442(2004)017<3156:AMMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., , and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • Cooke, W. F., , C. Liousse, , H. Cachier, , and J. Feichter, 1999: Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104, 22 13722 162, doi:10.1029/1999JD900187.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean. GFDL Tech Doc. 1, 141 pp.

  • Delworth, T. L., , R. Stouffer, , K. Dixon, , M. Spelman, , T. Knutson, , A. Broccoli, , P. Kushner, , and R. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dyn., 19, 555574, doi:10.1007/s00382-002-0249-5.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., , J. Marshall, , C. M. Bitz, , S. Solomon, , and A. Plumb, 2015: Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 12061226, doi:10.1175/JCLI-D-14-00313.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., , and W. D. Hibler, 1992: Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626651, doi:10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fortuin, J. P. F., , and H. Kelder, 1998: An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res., 103, 31 70931 734, doi:10.1029/1998JD200008.

    • Search Google Scholar
    • Export Citation
  • Freidenreich, S. M., , and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31 38931 409, doi:10.1029/1999JD900456.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and et al. , 2006: GFDL’S CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , W. Lefebvre, , A. de Montety, , E. Crespin, , and A. Orsi, 2009: Consistent past half-century trends in the atmosphere, the sea ice, and the ocean at high southern latitudes. Climate Dyn., 33, 9991016, doi:10.1007/s00382-008-0500-9.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Tech. Rep. 7, 620 pp.

  • Griffies, S. M., and et al. , 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and et al. , 2009: Coordinated ocean-ice reference experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Hall, A., , and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, doi:10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , R. J. Wilson, , J. D. Mahlman, , and L. J. Umscheid, 1995: Climatology of the SKYHI troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 52, 543, doi:10.1175/1520-0469(1995)052<0005:COTSTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harangozo, S. A., 2006: Atmospheric circulation impacts on winter maximum sea ice extent in the West Antarctic Peninsula region (1979–2001). Geophys. Res. Lett., 33, L02502, doi:10.1029/2005GL024978.

    • Search Google Scholar
    • Export Citation
  • Hassol, S. J., 2004: Impacts of a Warming Arctic—Arctic Climate Impact Assessment. Cambridge University Press, 139 pp.

  • Holland, M. M., , C. M. Bitz, , and A. J. Weaver, 2001: The influence of sea ice physics on simulations of climate change. J. Geophys. Res., 106, 19 63919 655, doi:10.1029/2000JC000651.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , C. M. Bitz, , and E. C. Hunke, 2005: Mechanisms forcing an Antarctic dipole in simulated sea ice and surface ocean conditions. J. Climate, 18, 20522066, doi:10.1175/JCLI3396.1.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , C. M. Bitz, , E. C. Hunke, , W. H. Lipscomb, , and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19, 23982414, doi:10.1175/JCLI3751.1.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , E. Blanchard-Wrigglesworth, , J. Kay, , and S. Vavrus, 2013: Initial-value predictability of Antarctic sea ice in the Community Climate System Model 3. Geophys. Res. Lett., 40, 21212124, doi:10.1002/grl.50410.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., , and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Horowitz, L. W., and et al. , 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108, 4784, doi:10.1029/2002JD002853.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., , A. Orr, , G. J. Marshall, , J. Turner, , and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, doi:10.1175/JCLI-D-12-00813.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 1997: The Global Precipitation Climatology Project (GPCP) combined dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19, 16241651, doi:10.1175/JCLI3709.1.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., , and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESAT records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Rep. NCAR/TN-460+STR, 112 pp.

  • Laxon, S. W., and et al. , 2013: Cryosat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737, doi:10.1002/grl.50193.

    • Search Google Scholar
    • Export Citation
  • Lemke, P., , E. W. Trinkl, , and K. Hasselmann, 1980: Stochastic dynamic analysis of polar sea ice variability. J. Phys. Oceanogr., 10, 21002120, doi:10.1175/1520-0485(1980)010<2100:SDAOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., , J. Zhang, , A. J. Schweiger, , and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, doi:10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , and J. A. Curry, 2010: Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc. Natl. Acad. Sci. USA, 107, 14 98714 992, doi:10.1073/pnas.1003336107.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., , A. V. Mishonov, , J. I. Antonov, , T. P. Boyer, , and H. E. Garcia, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Manabe, S., , R. J. Stouffer, , M. J. Spelman, , and K. Bryan, 1991: Transient response of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual-mean response. J. Climate, 4, 785818, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., , S. E. Stammerjohn, , R. A. Iannuzzi, , R. C. Smith, , and M. Vernet, 2008: Western Antarctic peninsula physical oceanography and spatio-temporal variability. Deep-Sea Res. II, 55, 19641987, doi:10.1016/j.dsr2.2008.04.038.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., , S. E. Stammerjohn, , W. Lefebvre, , S. A. Harangozo, , N. Adams, , T. A. Scambos, , M. J. Pook, , and C. Fowler, 2008: West Antarctic Peninsula sea ice in 2005: Extreme ice compaction and ice edge retreat due to strong anomaly with respect to climate. J. Geophys. Res., 113, C02S20, doi:10.1029/2007JC004239.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., , P. Reid, , S. Stammerjohn, , B. Raymond, , A. Fraser, , and S. Ushio, 2013: Change and variability in East Antarctic sea ice seasonality, 1979/80–2009/10. PLoS ONE, 8, e64756, doi:10.1371/journal.pone.0064756.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., , and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, doi:10.1029/JC076i006p01550.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299, doi:10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohanakumar, K., 2008: Stratosphere–Troposphere Interactions: An Introduction. Springer, 416 pp.

  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273, doi:10.1006/jcph.1996.0136.

    • Search Google Scholar
    • Export Citation
  • NOAA/NCDC, 2014: State of the climate: Global snow and ice for September 2013. Accessed 19 August 2014. [Available online at http://www.ncdc.noaa.gov/sotc/global-snow/201309.]

  • Olivier, J. G. J., and et al. , 1996: Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 degree × 1 degree grid. Rijksinstituut voor Volksgezondheid en Milieu (RIVM) Rep. 771060002, 171 pp.

  • Parise, C. K., 2014: Sensitivity and memory of the current mean climate to increased Antarctic sea ice: The role of sea ice dynamics. Ph.D. thesis, National Institute for Space Research (INPE), 218 pp. [Available online at http://urlib.net/sid.inpe.br/plutao/2014/11.19.18.13.]

  • Polvani, L. M., , D. W. Waugh, , G. J. P. Correa, , and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Price, M. R., , K. J. Heywood, , and K. W. Nicholls, 2008: Ice-shelf–ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements. Ocean Sci., 4, 8998, doi:10.5194/os-4-89-2008.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 1999: A stratospheric ozone trends data set for global modeling studies. Geophys. Res. Lett., 26, 30893092, doi:10.1029/1999GL900615.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., , and W. Hobbs, 2014: The influence of the large-scale atmospheric circulation on Antarctic sea ice during ice advance and retreat seasons. Geophys. Res. Lett., 41, 50375045, doi:10.1002/2014GL060365.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008a: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311, doi:10.1175/BAMS-89-3-303.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008b: Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J. Geophys. Res., 113, D05106, doi:10.1029/2007JD009278.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15, 30583068, doi:10.1175/1520-0442(2002)015<3058:SHCARW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, G., , M. R. Wadley, , K. J. Heywood, , D. P. Stevens, , and H. T. Banks, 2005: Short-term climate response to a freshwater pulse in the Southern Ocean. Geophys. Res. Lett., 32, L03702, doi:10.1029/2004GL021586.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., , R. J. Stouffer, , and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19, 45604575, doi:10.1175/JCLI3869.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, D., , C. Deser, , and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., , and V. Ramaswamy, 1999: Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment. J. Geophys. Res., 104, 94679488, doi:10.1029/1999JD900003.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, doi:10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, doi:10.1029/2010GL044301.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , and J. C. Fyfe, 2014: The Antarctic sea ice response to the ozone hole in climate models. J. Climate, 27, 13361342, doi:10.1175/JCLI-D-13-00590.1.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , and I. V. Kamenkovich, 2007: Simulation of Subantarctic Mode and Antarctic Intermediate Waters in climate models. J. Climate, 20, 50615080, doi:10.1175/JCLI4295.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , L. M. Polvani, , and D. R. Marsh, 2012: Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery. Geophys. Res. Lett., 39, L20701, doi:10.1029/2012GL053325.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , D. G. Martinson, , R. C. Smith, , X. Yuan, , and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Stern, W., , and K. Miyakoda, 1995: Feasibility of seasonal forecasts inferred from multiple GCM simulations. J. Climate, 8, 10711085, doi:10.1175/1520-0442(1995)008<1071:FOSFIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19, 723740, doi:10.1175/JCLI3632.1.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. Serreze, , M. Holland, , J. Kay, , J. Malanik, , and A. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., , D. Williamson, , and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 28 pp. [Available online at http://www-pcmdi.llnl.gov/publications/ab60.html.]

  • Thoma, M., , A. Jenkins, , D. Holland, , and S. Jacobs, 2008: Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L18602, doi:10.1029/2008GL034939.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , S. Solomon, , P. J. Kushner, , M. H. England, , K. M. Grise, , and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , and J. Overland, 2009: Contrasting climate change in the two polar regions. Polar Res., 28, 146164, doi:10.1111/j.1751-8369.2009.00128.x.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , S. R. Colwell, , and S. Harangozo, 1997: Variability of precipitation over the coastal western Antarctic peninsula from synoptic observations. J. Geophys. Res., 102, 13 99914 007, doi:10.1029/96JD03359.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and et al. , 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , T. Phillips, , J. S. Hosking, , G. J. Marshall, , and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, doi:10.1002/joc.3558.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and et al. , 2014: Antarctic climate change and the environment: An update. Polar Rec., 50, 237259, doi:10.1017/S0032247413000296.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., , J. L. Bamber, , M. Giovinetto, , J. Russell, , and A. P. R. Cooper, 1999: Reassessment of the net surface mass balance in Antarctica. J. Climate, 12, 933946, doi:10.1175/1520-0442(1999)012<0933:RONSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, W. B., , and A. E. Walker, 1974: Time and depth scales of anomalous subsurface temperature at ocean weather stations P, N, and V in the North Pacific. J. Geophys. Res., 79, 45174522, doi:10.1029/JC079i030p04517.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, doi:10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N. C. Lau, , and J. J. Ploshay, 2006: GFDL’S CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, doi:10.1017/S0954102004002238.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , and D. G. Martinson, 2001: The Antarctic dipole and its predictability. Geophys. Res. Lett., 28, 36093612, doi:10.1029/2001GL012969.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2007: Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J. Climate, 20, 25152529, doi:10.1175/JCLI4136.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2014: Modeling the impact of wind intensification on Antarctic sea ice volume. J. Climate, 27, 202214, doi:10.1175/JCLI-D-12-00139.1.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., , J. C. Comiso, , C. L. Parkinson, , D. J. Cavalieri, , and P. Gloersen, 2002: Variability of Antarctic sea ice 1979–1998. J. Geophys. Res., 107, doi:10.1029/2000JC000733.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 165 55
PDF Downloads 138 138 45

The Influence of Sea Ice Dynamics on the Climate Sensitivity and Memory to Increased Antarctic Sea Ice

View More View Less
  • 1 Center for Weather Forecast and Climate Studies (CPTEC), National Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil
  • | 2 Earth Observation General Coordination (OBT), National Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil
  • | 3 Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom
  • | 4 Agricultural Engineering Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
© Get Permissions
Restricted access

Abstract

The study analyzes the sensitivity and memory of the Southern Hemisphere coupled climate system to increased Antarctic sea ice (ASI), taking into account the persistence of the sea ice maxima in the current climate. The mechanisms involved in restoring the climate balance under two sets of experiments, which differ in regard to their sea ice models, are discussed. The experiments are perturbed with extremes of ASI and integrated for 10 yr in a large 30-member ensemble. The results show that an ASI maximum is able to persist for ~4 yr in the current climate, followed by a negative sea ice phase. The sea ice insulating effect during the positive phase reduces heat fluxes south of 60°S, while at the same time these are intensified at the sea ice edge. The increased air stability over the sea ice field strengthens the polar cell while the baroclinicity increases at midlatitudes. The mean sea level pressure is reduced (increased) over high latitudes (midlatitudes), typical of the southern annular mode (SAM) positive phase. The Southern Ocean (SO) becomes colder and fresher as the sea ice melts mainly through sea ice lateral melting, the consequence of which is an increase in the ocean stability by buoyancy and mixing changes. The climate sensitivity is triggered by the sea ice insulating process and the resulting freshwater pulse (fast response), while the climate equilibrium is restored by the heat stored in the SO subsurface layers (long response). It is concluded that the time needed for the ASI anomaly to be dissipated and/or melted is shortened by the sea ice dynamical processes.

Corresponding author address: Claudia K. Parise, National Institute for Space Research (INPE), Av. dos Astronaltas, 1758, Jardim da Granja, São José dos Campos, São Paulo 12227-010, Brazil. E-mail: claudiakparise@gmail.com

Abstract

The study analyzes the sensitivity and memory of the Southern Hemisphere coupled climate system to increased Antarctic sea ice (ASI), taking into account the persistence of the sea ice maxima in the current climate. The mechanisms involved in restoring the climate balance under two sets of experiments, which differ in regard to their sea ice models, are discussed. The experiments are perturbed with extremes of ASI and integrated for 10 yr in a large 30-member ensemble. The results show that an ASI maximum is able to persist for ~4 yr in the current climate, followed by a negative sea ice phase. The sea ice insulating effect during the positive phase reduces heat fluxes south of 60°S, while at the same time these are intensified at the sea ice edge. The increased air stability over the sea ice field strengthens the polar cell while the baroclinicity increases at midlatitudes. The mean sea level pressure is reduced (increased) over high latitudes (midlatitudes), typical of the southern annular mode (SAM) positive phase. The Southern Ocean (SO) becomes colder and fresher as the sea ice melts mainly through sea ice lateral melting, the consequence of which is an increase in the ocean stability by buoyancy and mixing changes. The climate sensitivity is triggered by the sea ice insulating process and the resulting freshwater pulse (fast response), while the climate equilibrium is restored by the heat stored in the SO subsurface layers (long response). It is concluded that the time needed for the ASI anomaly to be dissipated and/or melted is shortened by the sea ice dynamical processes.

Corresponding author address: Claudia K. Parise, National Institute for Space Research (INPE), Av. dos Astronaltas, 1758, Jardim da Granja, São José dos Campos, São Paulo 12227-010, Brazil. E-mail: claudiakparise@gmail.com
Save