• Andersson, E., and et al. , 2007: Analysis and forecast impact of the main humidity observing systems. Quart. J. Roy. Meteor. Soc., 133, 14731485, doi:10.1002/qj.112.

    • Search Google Scholar
    • Export Citation
  • Bao, X., , and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, doi:10.1175/JCLI-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and et al. , 2007: The need for a dynamical climate reanalysis. Bull. Amer. Meteor. Soc., 88, 495501, doi:10.1175/BAMS-88-4-495.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and M. Kulmala, 2011: Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th century. Atmos. Chem. Phys., 11, 45774586, doi:10.5194/acp-11-4577-2011.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , J. Ou, , Y. Zhou, , Q. Yang, , and Z. Cai, 2014: Discriminating cloud area by using L-band sounding data (in Chinese). Chin. J. Atmos. Sci., 38, 213222.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, S., , and A. Maitra, 2012: A comparative study of cloud liquid water content from radiosonde data at a tropical location. Int. Geosci., 3, 4449, doi:10.4236/ijg.2012.31006.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , J. Wang, , P. W. Thorne, , D. E. Parker, , L. Haimberger, , and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965991, doi:10.1175/2010JCLI3816.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, doi:10.1256/qj.05.137.

  • Dee, D. P., , and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, doi:10.1002/qj.493.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , and S. M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, doi:10.1029/2010JD014192.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and et al. , 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Endo, N., , B. Ailikun, , and T. Yasunari, 2005: Trends in precipitation amounts and the number of rainy days and heavy rainfall events during summer in China from 1961 to 2000. J. Meteor. Soc. Japan, 83, 621631, doi:10.2151/jmsj.83.621.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., , W. Wang, , Y. Qian, , W. Bai, , Y. Guo, , and R. Mao, 2014: Observed holiday aerosol reduction and temperature cooling over East Asia. J. Geophys. Res. Atmos., 119, 63066324, doi:10.1002/2014JD021464.

    • Search Google Scholar
    • Export Citation
  • Haag, W., , B. Kärcher, , J. Ström, , A. Minikin, , U. Lohmann, , J. Ovarlez, , and A. Stohl, 2003: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys., 3, 17911806, doi:10.5194/acp-3-1791-2003.

    • Search Google Scholar
    • Export Citation
  • Hosseinzadeh Talaee, P., , T. A. A. Sabziparvar, , and H. Tabari, 2012: Observed changes in relative humidity and dew point temperature in coastal regions of Iran. Theor. Appl. Climatol., 110, 385393, doi:10.1007/s00704-012-0630-1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., , P. W. Thorne, , and H. A. Tichner, 2009: An analysis of tropospheric humidity trends from radiosondes. J. Climate, 22, 58205838, doi:10.1175/2009JCLI2879.1.

    • Search Google Scholar
    • Export Citation
  • Paltridge, G., , A. Arking, , and M. Pook, 2009: Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis data. Theor. Appl. Climatol., 98, 351359, doi:10.1007/s00704-009-0117-x.

    • Search Google Scholar
    • Export Citation
  • Price, J., , and R. Wood, 2002: Comparison of probability density functions for total specific humidity and saturation humidity, and consequences for cloud parameterization. Quart. J. Roy. Meteor. Soc., 128, 20592072, doi:10.1256/003590002320603539.

    • Search Google Scholar
    • Export Citation
  • Qian, T., , A. Dai, , K. E. Trenberth, , and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2002. Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975, doi:10.1175/JHM540.1.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., , D. Gong, , and R. Leung, 2010: Light rain events change over North America, Europe and Asia for 1973–2009. Atmos. Sci. Lett., 11, 301306, doi:10.1002/asl.298.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and et al. ., 2000: Instrumentation and data sets. SPARC assessment of upper tropospheric and stratospheric water vapour, SPARC Rep. 2, WCRP-113, WMO/TD 1043, 33–36.

  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., , H. H. Aumann, , and E. M. Manning, 2014: Relative humidity in the troposphere with AIRS. J. Atmos. Sci., 71, 25162533, doi:10.1175/JAS-D-13-0363.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , K. M. Willett, , P. D. Jones, , P. W. Thorne, , and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational datasets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , P. Poli, , D. P. Dee, , P. Berrisford, , H. Hersbach, , S. Kobayashi, , and C. Peubey, 2014: Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Quart. J. Roy. Meteor. Soc., 140, 329353, doi:10.1002/qj.2317.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for nonconvective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, doi:10.1002/qj.49710444110.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. Fasullo, , and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • van Wijngaarden, W. A., , and L. A. Vincent, 2004: Trends in relative humidity in Canada from 1953–2003. 15th Symp. on Global Change and Climate Variations, Seattle, WA, Amer. Meteor. Soc., JP2.3. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_70289.htm.]

  • Wang, A., , and X. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, doi:10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and W. B. Rossow, 1995: Determination of cloud vertical structure from upper-air observations. J. Appl. Meteor., 34, 22432258, doi:10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , W. B. Rossow, , and Y. Zhang, 2000: Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset. J. Climate, 13, 30413056, doi:10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and G. L. Stephens, 1984: Cloud radiation interaction and the climate problem. The Global Climate, J. Houghton, Ed., Cambridge University Press, 63–78.

  • Willett, K. M., , P. D. Jones, , N. P. Gillett, , and P. W. Thorne, 2008: Recent changes in surface humidity: Development of the HadCRUH dataset. J. Climate, 21, 53645383, doi:10.1175/2008JCLI2274.1.

    • Search Google Scholar
    • Export Citation
  • Wright, J. S., , A. Sobel, , and J. Galewsky, 2010: Diagnosis of zonal mean relative humidity changes in a warmer climate. J. Climate, 23, 45564569, doi:10.1175/2010JCLI3488.1.

    • Search Google Scholar
    • Export Citation
  • Xie, B., , Q. Zhang, , and Y. Ying, 2011: Trends in precipitable water and relative humidity in China: 1979–2005. J. Appl. Meteor. Climatol., 50, 19851994, doi:10.1175/2011JAMC2446.1.

    • Search Google Scholar
    • Export Citation
  • Xu, X., 2012: Spatiotemporal variation of total cloud and low cloud over China (in Chinese). Meteor. Mon., 38, 9095.

  • Zhai, P., , and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 26432652, doi:10.1175/1520-0442(1997)010<2643:AWVOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , H. Chen, , Z. Li, , X. Fan, , L. Peng, , Y. Yu, , and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res., 115, D00K30, doi:10.1029/2010JD014030.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , W. Yan, , D. Han, , and S. Yang, 2012: Determination of cloud vertical structure and analysis of its distribution based on RS92 radiosonde data (in Chinese). Remote Sens. Technol. Appl., 27, 231236. [English abstract available online at http://www.rsta.ac.cn/EN/abstract/abstract1812.shtml.]

    • Search Google Scholar
    • Export Citation
  • Zhao, T., , A. Dai, , and J. Wang, 2012: Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Climate, 25, 45494567, doi:10.1175/JCLI-D-11-00557.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., , and J. J. Ou, 2010: The method of cloud vertical structure analysis using rawinsonde observation and its applied research (in Chinese). Meteor. Mon., 36, 5058.

    • Search Google Scholar
    • Export Citation
  • Zong, X., , P. Wang, , and X. Xia, 2013: Variability and long-term trend of total cloud cover in China derived from ISCCP, ERA-40, CRU3, and ground station datasets. Atmos. Oceanic Sci. Lett., 6, 133137, doi:10.3878/j.issn.1674-2834.12.0100.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 10
PDF Downloads 35 35 8

Trends in the Frequency of High Relative Humidity over China: 1979–2012

View More View Less
  • 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
  • | 2 Key Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 Department of Earth System Science, University of California, Irvine, Irvine, California
  • | 4 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
© Get Permissions
Restricted access

Abstract

High relative humidity (HRH) is defined as a relative humidity of at least 80%, which is often associated with the occurrence of cloud layers. Thus, the frequency of HRH and its changes in the troposphere may be related to the occurrence frequency of cloud layers and their changes. In this study, trends in the frequency of HRH (defined as days with relative humidity ≥80%) over China from the surface to the midtroposphere (≥400 hPa) from 1979 to 2012 were analyzed using a homogenized humidity dataset for spring (March–May), summer (June–August), autumn (September–November), and winter (December–February). The results for the ground level indicate decreasing trends at most stations in southeastern China in spring and in northern China in summer. In the lower troposphere (850 and 700 hPa), most stations over China exhibit positive trends in summer, autumn, and winter. For the midtroposphere (500–400 hPa), increasing trends dominate over China in spring, summer, and autumn. Finally, six reanalysis datasets, the NCEP–NCAR, NCEP–DOE, CFSR, ERA-Interim, MERRA, and JRA-55 datasets, were compared with the observed increasing trends in HRH frequency in the low-to-middle troposphere. Similar increasing trends in HRH frequency in the reanalysis datasets and the homogenized humidity data are observed in certain seasons and for certain regions. These results are consistent with the increasing low-to-middle cloud amounts in recent decades.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00840.s1.

Corresponding author address: Rui Mao, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. E-mail: mr@bnu.edu.cn

Abstract

High relative humidity (HRH) is defined as a relative humidity of at least 80%, which is often associated with the occurrence of cloud layers. Thus, the frequency of HRH and its changes in the troposphere may be related to the occurrence frequency of cloud layers and their changes. In this study, trends in the frequency of HRH (defined as days with relative humidity ≥80%) over China from the surface to the midtroposphere (≥400 hPa) from 1979 to 2012 were analyzed using a homogenized humidity dataset for spring (March–May), summer (June–August), autumn (September–November), and winter (December–February). The results for the ground level indicate decreasing trends at most stations in southeastern China in spring and in northern China in summer. In the lower troposphere (850 and 700 hPa), most stations over China exhibit positive trends in summer, autumn, and winter. For the midtroposphere (500–400 hPa), increasing trends dominate over China in spring, summer, and autumn. Finally, six reanalysis datasets, the NCEP–NCAR, NCEP–DOE, CFSR, ERA-Interim, MERRA, and JRA-55 datasets, were compared with the observed increasing trends in HRH frequency in the low-to-middle troposphere. Similar increasing trends in HRH frequency in the reanalysis datasets and the homogenized humidity data are observed in certain seasons and for certain regions. These results are consistent with the increasing low-to-middle cloud amounts in recent decades.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00840.s1.

Corresponding author address: Rui Mao, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. E-mail: mr@bnu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 739.27 KB)
Save