• Ackerman, S. A., , A. Heidinger, , M. J. Foster, , and B. Maddux, 2013: Satellite regional cloud climatology over the Great Lakes. Remote Sens., 5, 62236240, doi:10.3390/rs5126223.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., , and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., , E. A. Clark, , D. P. Lettenmaier, , and E. F. Wood, 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538, doi:10.1175/JCLI3604.1.

    • Search Google Scholar
    • Export Citation
  • Adams, R. M., and et al. , 1990: Global climate change and US agriculture. Nature, 345, 219224, doi:10.1038/345219a0.

  • Alexandru, A., , R. de Elia, , and R. Laprise, 2007: Internal variability in regional climate downscaling at the seasonal scale. Mon. Wea. Rev., 135, 32213238, doi:10.1175/MWR3456.1.

    • Search Google Scholar
    • Export Citation
  • Amante, C., , and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources, and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp.

  • Angel, J. R., , and S. A. Isard, 1998: The frequency and intensity of Great Lake cyclones. J. Climate, 11, 6171, doi:10.1175/1520-0442(1998)011<0061:TFAIOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Angel, J. R., , and K. E. Kunkel, 2010: The response of Great Lakes water levels to future climate scenarios with an emphasis on Lake Michigan-Huron. J. Great Lakes Res., 36, 5158, doi:10.1016/j.jglr.2009.09.006.

    • Search Google Scholar
    • Export Citation
  • Antic, S., , R. Laprise, , B. Denis, , and R. de Elía, 2004: Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Climate Dyn., 23, 473493, doi:10.1007/s00382-004-0438-5.

    • Search Google Scholar
    • Export Citation
  • Assel, R. A., 2003: An electronic atlas of Great Lakes ice cover winters: 1973–2002. [Available online at http://www.glerl.noaa.gov/data/ice/atlas/.]

  • Assel, R. A., 2005: Classification of annual Great Lakes ice cycles: Winters of 1973–2002. J. Climate, 18, 48954905, doi:10.1175/JCLI3571.1.

    • Search Google Scholar
    • Export Citation
  • Assel, R. A., , S. Drobrot, , and T. E. Croley, 2004: Improving 30-day Great Lakes ice cover outlooks. J. Hydrometeor., 5, 713717, doi:10.1175/1525-7541(2004)005<0713:IDGLIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, J. A., , and S. M. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice‐albedo feedback. Geophys. Res. Lett., 34, L06604, doi:10.1029/2006GL029021.

    • Search Google Scholar
    • Export Citation
  • Bates, G. T., , S. W. Hostetler, , and F. Giorgi, 1995: Two-year simulation of the Great Lakes region with a coupled modeling system. Mon. Wea. Rev., 123, 15051522, doi:10.1175/1520-0493(1995)123<1505:TYSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beltran, R., , L. Botts, , P. Brown, , T. Clarke, , D. Cowell, , K. Fuller, , and B. Krushelnicki, 1995: The Great Lakes: An Environmental Atlas and Resource Book. K. Fuller, H. Shear, and J. Wittig, Eds., Government of Canada and United States Environmental Protection Agency, 46 pp.

  • Bennington, V., , M. Notaro, , and K. Holman, 2014: Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. J. Climate, 27, 28862911, doi:10.1175/JCLI-D-13-00110.1.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., , C. Spence, , N. Hedstrom, , and J. D. Lenters, 2011: Evaporation from Lake Superior: 1. Physical controls and processes. J. Great Lakes Res., 37, 707716, doi:10.1016/j.jglr.2011.08.009.

    • Search Google Scholar
    • Export Citation
  • Bodaly, R. A., , J. W. M. Rudd, , R. J. P. Fudge, , and C. A. Kelly, 1993: Mercury concentrations in fish related to size of remote Canadian shield lakes. Can. J. Fish. Aquat. Sci., 50, 980987, doi:10.1139/f93-113.

    • Search Google Scholar
    • Export Citation
  • Botts, L., , and B. Krushelnicki, 1988: The Great Lakes: An Environmental Atlas and Resource Book. U.S. Environmental Protection Agency, 46 pp.

  • Brown, R., , W. Taylor, , and R. A. Assel, 1993: Factors affecting the recruitment of lake whitefish in two areas of northern Lake Michigan. J. Great Lakes Res., 19, 418428, doi:10.1016/S0380-1330(93)71229-0.

    • Search Google Scholar
    • Export Citation
  • Bruce, J. P., 1984: Great Lakes levels and flows: Past and future. J. Great Lakes Res., 10, 126134, doi:10.1016/S0380-1330(84)71819-3.

    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., , M. E. Kirby, , H. T. Mullins, , and W. P. Patterson, 2003: Increasing Great Lake–effect snowfall during the twentieth century: A regional response to global warming? J. Climate, 16, 35353542, doi:10.1175/1520-0442(2003)016<3535:IGLSDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1993: Changes in climate and level of Lake Michigan: Shoreline impacts at Chicago. Climatic Change, 23, 213230, doi:10.1007/BF01091616.

    • Search Google Scholar
    • Export Citation
  • Chao, P., 1999: Great Lakes water resources: Climate change impact analysis with transient GCM scenarios. J. Amer. Water Resour. Assoc., 35, 14991507, doi:10.1111/j.1752-1688.1999.tb04233.x.

    • Search Google Scholar
    • Export Citation
  • Clites, A. H., , and D. H. Lee, 1998: MIDLAKES: A coordinated hydrologic response model for the middle Great Lakes. NOAA Tech. Rep. ERL GLERL-109, 48 pp. [Available online at http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-109/tm-109.pdf.]

  • Cohen, S. J., 1986: Impacts of CO2-induced climatic change on water resources in the Great Lakes basin. Climatic Change, 8, 135153, doi:10.1007/BF00139751.

    • Search Google Scholar
    • Export Citation
  • Croley, T. E., II, 1990: Laurentian Great Lakes double-CO2 climate change hydrological impacts. Climatic Change, 17, 2747, doi:10.1007/BF00148999.

    • Search Google Scholar
    • Export Citation
  • Croley, T. E., II, , and T. S. Hunter, 1994: Great Lakes monthly hydrologic data. NOAA Tech. Memo. ERL GLERL-83, 13 pp. [Available online at http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-083/report.pdf.]

  • Croley, T. E., II, , F. H. Quinn, , K. E. Kunkel, , and S. A. Changnon, 1996: Climate transposition effects on the Great Lakes hydrological cycle. NOAA Tech. Memo. ERL GLERL-89, 107 pp. [Available online at http://ftp.glerl.noaa.gov/ftp/publications/tech_reports/glerl-089/tm-089.pdf.]

  • Croley, T. E., II, , F. H. Quinn, , K. E. Kunkel, , and S. A. Changnon, 1998: Great Lakes hydrology under transposed climates. Climatic Change, 38, 405433, doi:10.1023/A:1005344010723.

    • Search Google Scholar
    • Export Citation
  • Crossman, E. J., , and B. C. Cudmore, 1998: Biodiversity of the fishes of the Laurentian Great Lakes: A Great Lakes Fishery Commission project. Ital. J. Zool., 65, 357361, doi:10.1080/11250009809386846.

    • Search Google Scholar
    • Export Citation
  • DeMarchi, C., , Q. Dai, , M. E. Mello, , and T. S. Hunter, 2010: Uncertainty quantification in the net basin supply of Lake Erie and Lake Michigan. Proc. SimHydro 2010: Hydraulic Modeling and Uncertainty, Sophia-Antipolis, France, Société Hydrotechnique de France.

  • Denis, B., , R. Laprise, , D. Caya, , and J. Côté, 2002: Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Climate Dyn., 18, 627646, doi:10.1007/s00382-001-0201-0.

    • Search Google Scholar
    • Export Citation
  • Desai, A. R., , J. A. Austin, , V. Bennington, , and G. A. McKinley, 2009: Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci., 2, 855858, doi:10.1038/ngeo693.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Phillips, , V. Bourdette, , and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , A. Henderson-Sellers, , P. J. Kennedy, , and M. Wilson, 1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 69 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-527.pdf.]

  • Dickinson, R. E., , A. Henderson-Sellers, , and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-198.pdf.]

  • Dominguez, F., , J. Cañon, , and J. Valdes, 2010: IPCC-AR4 climate simulations for the southwestern US: The importance of future ENSO projections. Climatic Change, 99, 499514, doi:10.1007/s10584-009-9672-5.

    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., , W. R. Peltier, , A. R. Erier, , and J. Gula, 2014: Climate change impacts on Great Lakes basin precipitation extremes. J. Geophys. Res. Atmos., 119, 10 79910 812, doi:10.1002/2014JD021855.

    • Search Google Scholar
    • Export Citation
  • Elguindi, N., and et al. , 2011: Regional Climatic Model RegCM user manual version 4.1. Abdus Salam International Centre for Theoretical Physics Rep., 32 pp.

  • Ellis, A. W., , and J. J. Johnson, 2004: Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeor., 5, 471486, doi:10.1175/1525-7541(2004)005<0471:HAOSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ficke, A. D., , C. A. Myrick, , and L. J. Hansen, 2007: Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish., 17, 581613, doi:10.1007/s11160-007-9059-5.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, doi:10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuller, K., and et al. , 1995: The Great Lakes: An environmental atlas and resource book. Government of Canada and U.S. Environmental Protection Agency Rep. 905-B-95-001, 51 pp.

  • Giorgi, F., and et al. , 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729, doi:10.3354/cr01018.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1994: Description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-214.pdf.]

  • Grigal, D. F., 2002: Inputs and outputs of mercury from terrestrial watersheds: A review. Environ. Rev., 10, 139, doi:10.1139/a01-013.

    • Search Google Scholar
    • Export Citation
  • Gronewold, A. D., , V. Fortin, , B. Lofgren, , A. Clites, , C. A. Stow, , and F. Quinn, 2013: Coasts, water levels, and climate change: A Great Lakes perspective. Climatic Change, 120, 697711, doi:10.1007/s10584-013-0840-2.

    • Search Google Scholar
    • Export Citation
  • Gula, J., , and W. R. Peltier, 2012: Dynamical downscaling over the Great Lakes basin of North America using the WRF Regional Climate Model: The impact of the Great Lakes system on regional greenhouse warming. J. Climate, 25, 77237742, doi:10.1175/JCLI-D-11-00388.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, H. C., 1990: Climate change impacts on Laurentian Great Lakes levels. Climatic Change, 17, 4967, doi:10.1007/BF00149000.

  • Hayhoe, K., , J. VanDorn, , T. Croley II, , N. Schlegal, , and D. Wuebbles, 2010: Regional climate change projections for Chicago and the US Great Lakes. J. Great Lakes Res., 36, 721, doi:10.1016/j.jglr.2010.03.012.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Holman, K. D., , A. D. Gronewold, , M. Notaro, , and A. Zarrin, 2012: Improving historical precipitation estimates over the Lake Superior basin. Geophys. Res. Lett., 39, L03405, doi:10.1029/2011GL050468.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., 1991: Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of Lake Lahontan. Climate Dyn., 6, 4348, doi:10.1007/BF00210581.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., , and P. J. Bartlein, 1990: Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res., 26, 26032612, doi:10.1029/WR026i010p02603.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., , G. T. Bates, , and F. Giorgi, 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98, 50455057, doi:10.1029/92JD02843.

    • Search Google Scholar
    • Export Citation
  • Kao, Y.-C., , C. P. Madenjian, , D. B. Bunnell, , B. M. Lofgren, , and M. Perroud, 2015: Temperature effects induced by climate change on the growth and consumption by salmonines in Lakes Michigan and Huron. Environ. Biol. Fish., 98, 10891104, doi:10.1007/s10641-014-0352-6.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J., , J. Hack, , G. Bonan, , B. Boville, , B. Breigleb, , D. Williamson, , and P. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp.

  • Kling, G. W., and et al. , 2003: Confronting climate change in the Great Lakes region: Impacts on our communities and ecosystems. Union of Concerned Scientists and Ecological Society of America Rep., 92 pp.

  • Kunkel, K., , S. A. Changnon, , T. E. Croley II, , and F. H. Quinn, 1998: Transposed climates for study of water supply variability of the Laurentian Great Lakes. Climatic Change, 38, 387404, doi:10.1023/A:1005351026653.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K., , K. Andsager, , and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, doi:10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K., , D. R. Easterling, , K. Redmond, , and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett., 30, 1900, doi:10.1029/2003GL018052.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K., , L. Ensor, , M. Palecki, , D. Easterling, , D. Robinson, , K. G. Hubbard, , and K. Redmond, 2009: A new look at lake-effect snowfall trends in the Laurentian Great Lakes using a temporally homogeneous data set. J. Great Lakes Res., 35, 2329, doi:10.1016/j.jglr.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K., and et al. , 2013: Regional climate trends and scenarios for the U.S. National Climate Assessment: Part 3. Climate of the Midwest U.S. NOAA Tech. Rep. NESDIS 142-3, 103 pp. [Available online at http://www.nesdis.noaa.gov/technical_reports/NOAA_NESDIS_Tech_Report_142-3-Climate_of_the_Midwest_U.S.pdf.]

  • Lindeberg, J. D., , and G. M. Albercook, 2000: Climate change and Great Lakes shipping/boating. Preparing for a Changing Climate: The Potential Consequences of Climate Variability and Change, P. J. Sousounis and J. M. Bisanz, Eds., University of Michigan, 39–42. [Available online at www.geo.msu.edu/glra/PDF_files/Regional%20Summary/04F_WRES_F.boating.pdf.]

  • Linder, K., , and M. Inglis, 1989: The potential effects of climate change on regional and national demands for electricity. EPRI Rep. 68-01-7033.

  • Lofgren, B. M., , F. H. Quinn, , A. H. Clites, , R. A. Assel, , A. J. Eberhardt, , and C. L. Luukkonen, 2002: Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs. J. Great Lakes Res., 28, 537554, doi:10.1016/S0380-1330(02)70604-7.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., , T. S. Hunter, , and J. Wilbarger, 2011: Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology. J. Great Lakes Res., 37, 744752, doi:10.1016/j.jglr.2011.09.006.

    • Search Google Scholar
    • Export Citation
  • MacKay, M., , and F. Seglenieks, 2013: On the simulation of Laurentian Great Lakes water levels under projections of global climate change. Climatic Change, 117, 5567, doi:10.1007/s10584-012-0560-z.

    • Search Google Scholar
    • Export Citation
  • Mackey, S., 2012: Great Lakes nearshore and coastal systems. U.S. National Climate Assessment Midwest Tech. Input Rep., 14 pp. [Available online at http://glisa.umich.edu/media/files/NCA/MTIT_Coastal.pdf.]

  • Magnuson, J., and et al. , 1995: Region 1—Laurentian Great Lakes and Precambrian shield. Proc. Symp. Report: Regional Assessment of Freshwater Ecosystems and Climate Change in North America, Leesburg, VA, U.S. Environmental Protection Agency and U.S. Geological Survey, 3–4. [Available online at http://www.aslo.org/meetings/Freshwater_Ecosystems_Symposium.pdf.]

  • Mallard, M. S., , C. G. Nolte, , O. R. Bullock, , T. L. Spero, , and J. Gula, 2014: Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos., 119, 71937208, doi:10.1002/2014JD021785.

    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., , C. G. Nolte, , T. L. Spero, , O. R. Bullock, , K. Alapaty, , J. A. Herwehe, , J. Gula, , and J. H. Bowden, 2015: Technical challenges and solutions in representing lakes when using WRF in downscaling applications. Geosci. Model Dev., 8, 10851096, doi:10.5194/gmd-8-1085-2015.

    • Search Google Scholar
    • Export Citation
  • Marchand, D., , M. Sanderson, , D. Howe, , and C. Alpaugh, 1988: Climatic change and Great Lakes levels: The impact on shipping. Climatic Change, 12, 107133, doi:10.1007/BF00138935.

    • Search Google Scholar
    • Export Citation
  • Martynov, A., , L. Sushama, , and R. Laprise, 2010: Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models. Boreal Environ. Res., 15, 143164.

    • Search Google Scholar
    • Export Citation
  • Martynov, A., , L. Sushama, , R. Laprise, , K. Winger, , and B. Dugas, 2012: Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America. Tellus, 64A, 16226, doi:10.3402/tellusa.v64i0.16226.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , A. W. Wood, , J. C. Adam, , D. P. Lettenmaier, , and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

    • Search Google Scholar
    • Export Citation
  • Millerd, F., 2011: The potential impact of climate change on Great Lakes international shipping. Climatic Change, 104, 629652, doi:10.1007/s10584-010-9872-z.

    • Search Google Scholar
    • Export Citation
  • Mortsch, L., , and F. H. Quinn, 1996: Climate change scenarios for Great Lakes basin ecosystem studies. Limnol. Oceanogr., 41, 903911, doi:10.4319/lo.1996.41.5.0903.

    • Search Google Scholar
    • Export Citation
  • Mortsch, L., , H. Hengeveld, , M. Lister, , L. Wenger, , B. Lofgren, , F. Quinn, , and M. Slivitzky, 2000: Climate change impacts on the hydrology of the Great Lakes-St. Lawrence system. Can. Water Resour. J., 25, 153179, doi:10.4296/cwrj2502153.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and et al. , 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Music, B., , A. Frigon, , B. Lofgren, , R. Turcotte, , and J.-F. Cyr, 2015: Present and future Laurentian Great Lakes hydroclimatic conditions as simulated by regional climate models with an emphasis on Lake Michigan-Huron. Climatic Change, 130, 603618, doi:10.1007/s10584-015-1348-8.

    • Search Google Scholar
    • Export Citation
  • Niimi, A. J., 1982: Economic and environmental issues of the proposed extension of the winter navigation season and improvements on the Great Lakes-St. Lawrence Seaway system. J. Great Lakes Res., 8, 532549, doi:10.1016/S0380-1330(82)71991-4.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., , K. Holman, , A. Zarrin, , S. Vavrus, , and V. Bennington, 2013a: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, doi:10.1175/JCLI-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., , A. Zarrin, , S. Vavrus, , and V. Bennington, 2013b: Simulation of heavy lake-effect snowstorms across the Great Lakes basin by RegCM4: Synoptic climatology and variability. Mon. Wea. Rev., 141, 19902014, doi:10.1175/MWR-D-11-00369.1.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., , V. Bennington, , and S. Vavrus, 2015: Dynamically downscaled projections of lake-effect snow in the Great Lakes basin. J. Climate, 28, 16611684, doi:10.1175/JCLI-D-14-00467.1.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., , E. E. Small, , and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105, 29 57929 594, doi:10.1029/2000JD900415.

    • Search Google Scholar
    • Export Citation
  • Pall, P., , M. Allen, , and D. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, doi:10.1007/s00382-006-0180-2.

    • Search Google Scholar
    • Export Citation
  • Patterson, J. C., , and P. F. Hamblin, 1988: Thermal simulation of a lake with winter ice cover. Limnol. Oceanogr., 33, 323338, doi:10.4319/lo.1988.33.3.0323.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., , D. Scavia, , C. Downer, , M. Gaden, , L. Iverson, , R. Nordstrom, , J. Patz, , and G. P. Robertson, 2014: Midwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 418–440, doi:10.7930/J0J1012N.

  • Quinn, F. H., 1978: Hydrologic response model of the North American Great Lakes. J. Hydrol., 37, 295307, doi:10.1016/0022-1694(78)90021-5.

    • Search Google Scholar
    • Export Citation
  • Reifen, C., , and R. Toumi, 2009: Climate projections: Past performance no guarantee of future skill? Geophys. Res. Lett., 36, L13704, doi:10.1029/2009GL038082.

    • Search Google Scholar
    • Export Citation
  • Reutter, J. M., and et al. , 2011: Lake Erie nutrient loading and harmful algal blooms: Research findings and management implications. Lake Erie Millennium Network Synthesis TeamFinal Rep., 17 pp. [Available online at http://www.ohioseagrant.osu.edu/_documents/publications/TS/TS-060%2020June2011LakeErieNutrientLoadingAndHABSfinal.pdf.]

  • Schwab, D., , G. Leshkevich, , and G. Muhr, 1992: Satellite measurements of surface water temperature in the Great Lakes: Great Lakes Coastwatch. J. Great Lakes Res., 18, 247258, doi:10.1016/S0380-1330(92)71292-1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. B., 1991: The potential impacts of climate change on the Great Lakes. Bull. Amer. Meteor. Soc., 72, 2128, doi:10.1175/1520-0477(1991)072<0021:TPIOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. L., , J. S. Pal, , F. Giorgi, , R. E. Dickinson, , and W. L. Chameides, 2005: The coupling of the Common Land Model (CLM0) to a regional climate model (RegCM). Theor. Appl. Climatol., 82, 225243, doi:10.1007/s00704-005-0132-5.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. L., , J. S. Pal, , S. A. Rauscher, , J. L. Bell, , N. S. Diffenbaugh, , A. Boone, , L. C. Sloan, , and F. Giorgi, 2009: Land surface coupling in regional climate simulations of the West African monsoon. Climate Dyn., 33, 869892, doi:10.1007/s00382-009-0543-6.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Takata, K., , S. Emori, , and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vaccaro, L., , and J. Read, 2011: Vital to our nation’s economy: Great Lakes jobs. Michigan Sea Grant 2011 Rep., 7 pp. [Available online at http://www.fws.gov/glri/documents/2011GreatLakesJobsReport.pdf.]

  • Vanderploeg, H. A., , S. J. Bolsenga, , G. L. Fahnenstiel, , J. R. Liebig, , and W. S. Gardner, 1992: Plankton ecology in an ice-covered bay of Lake Michigan: Utilization of a winter phytoplankton bloom by reproducing copepods. Hydrobiologia, 243, 175183, doi:10.1007/BF00007033.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D., and et al. , 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0157-y.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , X. Bai, , H. Hu, , A. Clites, , M. Colton, , and B. Lofgren, 2012: Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Climate, 25, 13181329, doi:10.1175/2011JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and et al. , 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and K. Matsuura, 2000: Terrestrial air temperature and precipitation: Monthly and annual time series (1950-1996), version 1.01. Center for Climatic Research, accessed 1 Apr 2008. [Available online at http://climate.geog.udel.edu/~climate/html_pages/download.html.]

  • Yediler, A., , and J. Jacobs, 1995: Synergistic effects of temperature; oxygen and water flow on the accumulation and tissue distribution of mercury in carp (Cyprinus carpio L.). Chemosphere, 31, 44374453, doi:10.1016/0045-6535(95)00324-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 288 288 66
PDF Downloads 165 165 35

Dynamical Downscaling–Based Projections of Great Lakes Water Levels

View More View Less
  • 1 Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 NOAA/Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan
© Get Permissions
Restricted access

Abstract

Projections of regional climate, net basin supply (NBS), and water levels are developed for the mid- and late twenty-first century across the Laurentian Great Lakes basin. Two state-of-the-art global climate models (GCMs) are dynamically downscaled using a regional climate model (RCM) interactively coupled to a one-dimensional lake model, and then a hydrologic routing model is forced with time series of perturbed NBS. The dynamical downscaling and coupling with a lake model to represent the Great Lakes create added value beyond the parent GCM in terms of simulated seasonal cycles of temperature, precipitation, and surface fluxes. However, limitations related to this rudimentary treatment of the Great Lakes result in warm summer biases in lake temperatures, excessive ice cover, and an abnormally early peak in lake evaporation. While the downscaling of both GCMs led to consistent projections of increases in annual air temperature, precipitation, and all NBS components (overlake precipitation, basinwide runoff, and lake evaporation), the resulting projected water level trends are opposite in sign. Clearly, it is not sufficient to correctly simulate the signs of the projected change in each NBS component; one must also account for their relative magnitudes. The potential risk of more frequent episodes of lake levels below the low water datum, a critical shipping threshold, is explored.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00847.s1.

Center for Climatic Research Contribution Number 1334.

Corresponding author address: Michael Notaro, Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: mnotaro@wisc.edu

Abstract

Projections of regional climate, net basin supply (NBS), and water levels are developed for the mid- and late twenty-first century across the Laurentian Great Lakes basin. Two state-of-the-art global climate models (GCMs) are dynamically downscaled using a regional climate model (RCM) interactively coupled to a one-dimensional lake model, and then a hydrologic routing model is forced with time series of perturbed NBS. The dynamical downscaling and coupling with a lake model to represent the Great Lakes create added value beyond the parent GCM in terms of simulated seasonal cycles of temperature, precipitation, and surface fluxes. However, limitations related to this rudimentary treatment of the Great Lakes result in warm summer biases in lake temperatures, excessive ice cover, and an abnormally early peak in lake evaporation. While the downscaling of both GCMs led to consistent projections of increases in annual air temperature, precipitation, and all NBS components (overlake precipitation, basinwide runoff, and lake evaporation), the resulting projected water level trends are opposite in sign. Clearly, it is not sufficient to correctly simulate the signs of the projected change in each NBS component; one must also account for their relative magnitudes. The potential risk of more frequent episodes of lake levels below the low water datum, a critical shipping threshold, is explored.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00847.s1.

Center for Climatic Research Contribution Number 1334.

Corresponding author address: Michael Notaro, Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: mnotaro@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 600.80 KB)
Save