• Abhilash, S., and et al. , 2014: Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2. Climate Dyn., 42, 28012815, doi:10.1007/s00382-013-2045-9.

    • Search Google Scholar
    • Export Citation
  • Arakawa, O., , and A. Kitoh, 2004: Comparison of local precipitation–SST relationship between the observation and a reanalysis dataset. Geophys. Res. Lett., 31, L12206, doi:10.1029/2004GL020283.

    • Search Google Scholar
    • Export Citation
  • Arribas, A., and et al. , 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910, doi:10.1175/2010MWR3615.1.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., , and V. Krishnamurthy, 2010: Spatial structure, forecast errors, and predictability of the South Asian monsoon in CFS monthly retrospective forecasts. J. Climate, 23, 47504769, doi:10.1175/2010JCLI2356.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , T. Li, , and J. P. McCreary, 2003: Coupling between northward-propagating intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, doi:10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Yang, , Q. Bao, , and B. Wang, 2008: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577597, doi:10.1175/2007MWR2172.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , Q. Bao, , P. Liu, , and J.-Y. Lee, 2009: Impacts of initial conditions on monsoon intraseasonal forecasting. Geophys. Res. Lett., 36, L08801, doi:10.1029/2009GL037166.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , J.-Y. Lee, , W. Wang, , and L. Gao, 2011: Sensitivity of dynamical intraseasonal prediction skills to different initial conditions. Mon. Wea. Rev., 139, 25722592, doi:10.1175/2011MWR3584.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , J.-Y. Lee, , P. Hsu, , H. Taniguchi, , B. Wang, , W. Wang, , and S. Weaver, 2013a: Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dyn., 41, 10671081, doi:10.1007/s00382-013-1859-9.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , J.-Y. Lee, , B. Wang, , W. Wang, , and F. Vitart, 2013b: Intraseasonal forecasting of the Asian summer monsoon in four operational and research models. J. Climate, 26, 41864203, doi:10.1175/JCLI-D-12-00252.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and J. Glick, 1997: Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J. Climate, 10, 647661, doi:10.1175/1520-0442(1997)010<0647:IASIIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , M. Morrissey, , D. T. Bolvin, , S. Curtis, , R. Joyce, , B. McGavock, , and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , S. Yang, , Y. Li, , A. Kumar, , X. Liu, , Z. Zuo, , and B. Jha, 2013a: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, doi:10.1175/JCLI-D-12-00437.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , S. Yang, , Y. Li, , A. Kumar, , W. Wang, , and Z. Gao, 2013b: Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. J. Geophys. Res. Atmos., 118, 13121328, doi:10.1002/jgrd.50193.

    • Search Google Scholar
    • Export Citation
  • Joseph, S., , A. K. Sahai, , and B. N. Goswami, 2010: Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models. Climate Dyn., 35, 651667, doi:10.1007/s00382-009-0635-3.

    • Search Google Scholar
    • Export Citation
  • Kang, H., , C. K. Park, , S. Hameed, , and K. Ashok, 2009: Statistical downscaling of precipitation in Korea using multimodel output variables as predictors. Mon. Wea. Rev., 137, 19281938, doi:10.1175/2008MWR2706.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., , I. S. Kang, , B. Wang, , and J. Y. Lee, 2008: Interannual variations of the boreal summer intraseasonal variability predicted by ten atmosphere–ocean coupled models. Climate Dyn., 30, 485496, doi:10.1007/s00382-007-0292-3.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., , P. J. Webster, , J. A. Curry, , and V. E. Toma, 2012: Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts. Climate Dyn., 39, 29752991, doi:10.1007/s00382-012-1470-5.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and et al. , 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., , M. Hoerling, , and B. Rajagopalan, 2005: Advancing dynamical prediction of Indian monsoon rainfall. Geophys. Res. Lett., 32, L08704, doi:10.1029/2004GL021979.

    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., and et al. , 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267283, doi:10.1007/s00382-010-0857-4.

    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., , B. Wang, , M. Wheeler, , X. Fu, , D. Waliser, , and I. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, doi:10.1175/2008MWR2459.1.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , S. Yang, , A. Kumar, , S. Weaver, , and X. W. Jiang, 2013: Diagnostics of subseasonal prediction biases of the Asian summer monsoon by the NCEP Climate Forecast System. Climate Dyn., 41, 14531474, doi:10.1007/s00382-012-1553-3.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , S. Yang, , Q. Li, , A. Kumar, , S. Weaver, , and S. Liu, 2014a: Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 14871508, doi:10.1007/s00382-013-1831-8.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and et al. , 2014b: Relationships between interannual and intraseasonal variations of the Asian-western Pacific summer monsoon hindcasted by BCC_CSM1.1(m). Adv. Atmos. Sci., 31, 10511064, doi:10.1007/s00376-014-3192-6.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , T. Wu, , S. Yang, , W. Jie, , S. Nie, , Q. Li, , Y. Cheng, , and X. Liang, 2015: Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m). Adv. Atmos. Sci., 32, 11561172, doi:10.1007/s00376-015-4194-8.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and et al. , 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. 656, ECMWF, 49 pp.

  • Neale, R., , and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neena, J. M., , J.-Y. Lee, , D. Waliser, , B. Wang, , and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, doi:10.1175/JCLI-D-13-00624.1.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., , and B. P. Kirtman, 2008: The impact of air–sea interactions on the simulation of tropical intraseasonal variability. J. Climate, 21, 66166635, doi:10.1175/2008JCLI2180.1.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., , and P. D. Sardeshmukh, 2011: Prospects for improving subseasonal predictions. Mon. Wea. Rev., 139, 36483666, doi:10.1175/MWR-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Pope, V., , and R. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211236, doi:10.1007/s00382-001-0222-8.

    • Search Google Scholar
    • Export Citation
  • Preethi, B., , R. H. Kripalani, , and K. K. Krishna, 2010: Indian summer monsoon rainfall variability in global ocean-atmospheric models. Climate Dyn., 35, 15211533, doi:10.1007/s00382-009-0657-x.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., , C. K. Unnikrishnan, , and B. Preethi, 2012: Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Climate Dyn., 38, 22572274, doi:10.1007/s00382-011-1061-x.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365369, doi:10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. O. Roads, 2005: Long-range predictability in the tropics. Part II: 30–60-day variability. J. Climate, 18, 634650, doi:10.1175/JCLI-3295.1.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., , and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349358, doi:10.2151/jmsj.85.349.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., , and Y. Tanimoto, 2012: Influence of sea surface temperature on the intraseasonal variability of the South China Sea summer monsoon. Climate Dyn., 39, 12091218, doi:10.1007/s00382-011-1118-x.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., , Y. Tanimoto, , B. Preethi, , P. Terray, , and R. Krishnan, 2013: Intraseasonal SST–precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, doi:10.1007/s00382-012-1547-1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Seo, K. H., , J. K. Schemm, , W. Wang, , and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System: The effect of sea surface temperature. Mon. Wea. Rev., 135, 18071827, doi:10.1175/MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K. H., , W. Wang, , J. Gottschalck, , Q. Zhang, , J. E. Schemm, , W. R. Higgins, , and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , and H. Chen, 2012: A statistical downscaling scheme to improve global precipitation forecasting. Meteor. Atmos. Phys., 117, 87102, doi:10.1007/s00703-012-0195-7.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , K.-M. Lau, , and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358, doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , K.-M. Lau, , W. Stern, , and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, doi:10.1175/BAMS-84-1-33.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Q. Ding, , X. Fu, , I. S. Kang, , K. Jin, , J. Shukla, , and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and et al. , 2008: How accurately do coupled climate models predict the Asian–Australian monsoon interannual variability? Climate Dyn., 30, 605619, doi:10.1007/s00382-007-0310-5.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and et al. , 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/s00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , M. P. Hung, , S. J. Weaver, , A. Kumar, , and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, doi:10.1007/s00382-013-1806-9.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and et al. , 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi:10.1029/2009GL040896.

    • Search Google Scholar
    • Export Citation
  • Wen, M., , S. Yang, , A. Vintzileos, , W. Higgins, , and R. Zhang, 2012: Impacts of model resolutions and initial conditions on predictions of the Asian summer monsoon by the NCEP Climate Forecast System. Wea. Forecasting, 27, 629646, doi:10.1175/WAF-D-11-00128.1.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., , J. M. Slingo, , and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 20862104, doi:10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2010: Subseasonal variability during the South China Sea summer monsoon onset. Climate Dyn., 34, 629642, doi:10.1007/s00382-009-0679-4.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and K. Pegion, 2008: Local rainfall–SST relationship on subseasonal time scales in satellite observations and CFS. Geophys. Res. Lett., 35, L22706, doi:10.1029/2008GL035883.

    • Search Google Scholar
    • Export Citation
  • Xavier, P. K., , J. P. Duvel, , and J. D. Francisco, 2008: Boreal summer intraseasonal variability in coupled seasonal hindcasts. J. Climate, 21, 44774497, doi:10.1175/2008JCLI2216.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , Z. Zhang, , V. Kousky, , R. W. Higgins, , S. H. Yoo, , J. Liang, , and Y. Fan, 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21, 37553775, doi:10.1175/2008JCLI1961.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , S. Yang, , X. Jiang, , and P. Zhao, 2015: Seasonal–interannual variation and prediction of wet and dry season rainfall over the Maritime Continent: Roles of ENSO and monsoon circulation. J. Climate, doi:10.1175/JCLI-D-15-0222.1, in press.

  • Zhao, S., , and S. Yang, 2014: Dynamical prediction of the early season rainfall over southern China by the NCEP Climate Forecast System. Wea. Forecasting, 29, 13911401, doi:10.1175/WAF-D-14-00012.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 3
PDF Downloads 19 19 0

Subseasonal Predictions of Regional Summer Monsoon Rainfall over Tropical Asian Oceans and Land

View More View Less
  • 1 National Climate Center, and Laboratory for Climate Studies, China Meteorological Administration, Beijing, China
  • | 2 School of Environmental Science and Engineering, and Institute of Earth Climate and Environment System, Sun Yat-sen University, Guangzhou, China
  • | 3 National Climate Center, and Laboratory for Climate Studies, China Meteorological Administration, Beijing, China
  • | 4 Nantong Meteorological Bureau, Nantong, Jiangsu, China
  • | 5 Zaozhuang Meteorological Bureau, Zaozhuang, Shandong, China
© Get Permissions
Restricted access

Abstract

Subseasonal predictions of the regional summer rainfall over several tropical Asian ocean and land domains are examined using hindcasts by the NCEP CFSv2. Higher actual and potential forecast skill are found over oceans than over land. The forecast for Arabian Sea (AS) rainfall is most skillful, while that for Indo-China (ICP) rainfall is most unskillful. The rainfall–surface temperature (ST) relationship over AS is characterized by strong and fast ST forcing but a weak and slow ST response, while the relationships over the Bay of Bengal, the South China Sea (SCS), and the India subcontinent (IP) show weak and slow ST forcing, but apparently strong and rapid ST response. Land–air interactions are often less noticeable over ICP and southern China (SC) than over IP. The CFSv2 forecasts reasonably reproduce these observed features, but the local rainfall–ST relationships often suffer from different degrees of unrealistic estimation. Also, the observed local rainfall is often related to the circulation over limited regions, which gradually become more extensive in forecasts as lead time increases. The prominent interannual differences in forecast skill of regional rainfall are sometimes associated with apparent disparities in forecasts of local rainfall–ST relationships. Besides, interannual variations of boreal summer intraseasonal oscillation, featured by obvious changes in frequency and amplitude of certain phases, significantly modulate the forecasts of rainfall over certain regions, especially the SCS and SC. It is further discussed that the regional characteristics of rainfall and model’s deficiencies in capturing the influences of local and large-scale features are responsible for the regional discrepancies of actual predictability of rainfall.

Denotes Open Access content.

Corresponding author address: Prof. Song Yang, Department of Atmospheric Sciences, Sun Yat-sen University, 135 W. Xingang Rd., Haizhu District, Guangzhou, Guangdong 510275, China. E-mail: yangsong3@mail.sysu.edu.cn

Abstract

Subseasonal predictions of the regional summer rainfall over several tropical Asian ocean and land domains are examined using hindcasts by the NCEP CFSv2. Higher actual and potential forecast skill are found over oceans than over land. The forecast for Arabian Sea (AS) rainfall is most skillful, while that for Indo-China (ICP) rainfall is most unskillful. The rainfall–surface temperature (ST) relationship over AS is characterized by strong and fast ST forcing but a weak and slow ST response, while the relationships over the Bay of Bengal, the South China Sea (SCS), and the India subcontinent (IP) show weak and slow ST forcing, but apparently strong and rapid ST response. Land–air interactions are often less noticeable over ICP and southern China (SC) than over IP. The CFSv2 forecasts reasonably reproduce these observed features, but the local rainfall–ST relationships often suffer from different degrees of unrealistic estimation. Also, the observed local rainfall is often related to the circulation over limited regions, which gradually become more extensive in forecasts as lead time increases. The prominent interannual differences in forecast skill of regional rainfall are sometimes associated with apparent disparities in forecasts of local rainfall–ST relationships. Besides, interannual variations of boreal summer intraseasonal oscillation, featured by obvious changes in frequency and amplitude of certain phases, significantly modulate the forecasts of rainfall over certain regions, especially the SCS and SC. It is further discussed that the regional characteristics of rainfall and model’s deficiencies in capturing the influences of local and large-scale features are responsible for the regional discrepancies of actual predictability of rainfall.

Denotes Open Access content.

Corresponding author address: Prof. Song Yang, Department of Atmospheric Sciences, Sun Yat-sen University, 135 W. Xingang Rd., Haizhu District, Guangzhou, Guangdong 510275, China. E-mail: yangsong3@mail.sysu.edu.cn
Save