• Anderberg, N. R., 1973: Cluster Analysis for Applications. Elsevier, 359 pp.

  • Bauer, M., , and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672, doi:10.1175/JCLI3690.1.

    • Search Google Scholar
    • Export Citation
  • Bauer, M., , G. Tselioudis, , and W. B. Rossow, 2011: MAP climatology of mid-latitude storminess, version using NCEP–DOE Reanalysis 2. NASA/GISS, accessed 1 February 2013. [Available online at http://gcss-dime.giss.nasa.gov/mcms/].

  • Bodas-Salcedo, A., , K. D. Williams, , P. R. Field, , and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, doi:10.1175/JCLI-D-11-00702.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and et al. , 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and et al. , 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, doi:10.1175/BAMS-85-7-967.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., , and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, doi:10.1175/2008JCLI2239.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, doi:10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., , M. A. Miller, , B. A. Albrecht, , and C. W. Fairall, 2015: Thermodynamic and radiative structure of stratocumulus-topped boundary layers. J. Atmos. Sci., 72, 430451, doi:10.1175/JAS-D-13-0313.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , M. E. Ockert-Bell, , and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hasanean, H. M., 2004: Variability of the North Atlantic subtropical high and associations with tropical sea-surface temperature. Int. J. Climatol., 24, 945957, doi:10.1002/joc.1042.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21, 43484364, doi:10.1175/2008JCLI2122.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulation systems. Mon. Wea. Rev., 125, 31723189, doi:10.1175/1520-0493(1997)125<3172:CSASOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mason, S., , C. Jakob, , A. Protat, , and J. Delanoë, 2014: Characterizing observed midtopped cloud regimes associated with Southern Ocean shortwave radiation biases. J. Climate, 27, 61896203, doi:10.1175/JCLI-D-14-00139.1.

    • Search Google Scholar
    • Export Citation
  • Mechem, D., , Y. L. Kogan, , and D. M. Schultz, 2010: Large-eddy observation of post-cold-frontal continental stratocumulus. J. Atmos. Sci., 67, 33683383, doi:10.1175/2010JAS3389.1.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and et al. , 2014: Ocean–cloud–atmosphere–land interactions in the southeastern Pacific: The VOCALS program. Bull. Amer. Meteor. Soc., 95, 357375, doi:10.1175/BAMS-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., , J. F. Booth, , and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, doi:10.1175/JCLI-D-13-00432.1.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. J. Climate, 13, 245256, doi:10.1175/1520-0442(2000)013<0245:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , Y. Zhang, , and J. M. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11, 24822490, doi:10.1175/1520-0442(1998)011<2482:ROLCIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rémillard, J., , P. Kollias, , E. Luke, , and R. Wood, 2012: Marine boundary layer cloud observations in the Azores. J. Climate, 25, 73817398, doi:10.1175/JCLI-D-11-00610.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , G. Tselioudis, , A. Polak, , and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., , and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, doi:10.1175/2010MWR3294.1.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , K. Keay, , and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, doi:10.1175/JCLI-D-11-00100.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/2011GL047632.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and T. J. Greenwald, 1991: The Earth’s radiation budget and its relation to atmospheric hydrology: 2. Observations of cloud effects. J. Geophys. Res., 96, 15 32515 340, doi:10.1029/91JD00972.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and et al. , 2003: Dynamics and chemistry of maritime stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, doi:10.1175/BAMS-84-5-579.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., 2012: Global weather states from the ISCCP D1 cloud dataset. NASA/GISS, accessed 11 January 2013. [Available online at http://isccp.giss.nasa.gov/gcluster.html.]

  • Tselioudis, G., , W. Rossow, , Y. Zhang, , and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, doi:10.1175/JCLI-D-13-00024.1.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., , and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231250, doi:10.1007/s00382-007-0232-2.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and et al. , 2013: The Transpose-AMIP II Experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, doi:10.1175/JCLI-D-12-00429.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and et al. , 2015: Clouds, aerosol, and precipitation in the marine boundary layer: An ARM mobile facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, doi:10.1175/BAMS-D-13-00180.1.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , J. T. Bacmeister, , J. T. Kiehl, , I. M. Held, , M. Zhao, , S. A. Klein, , and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27, 261279, doi:10.1007/s00382-006-0138-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 25
PDF Downloads 86 86 20

Cloud Regime Variability over the Azores and Its Application to Climate Model Evaluation

View More View Less
  • 1 Columbia University, and NASA Goddard Institute for Space Studies, New York, New York
© Get Permissions
Restricted access

Abstract

From its location on the subtropics–midlatitude boundary, the Azores is influenced by both the subtropical high pressure and the midlatitude baroclinic storm regimes and therefore experiences a wide range of cloud structures, from fair-weather scenes to stratocumulus sheets and deep convective systems. This work combines three types of datasets to study cloud variability in the Azores: a satellite analysis of cloud regimes, a reanalysis characterization of storminess, and a 19-month field campaign that occurred on Graciosa Island. Combined analysis of the three datasets provides a detailed picture of cloud variability and the respective dynamic influences, with emphasis on low clouds that constitute a major uncertainty source in climate model simulations. The satellite cloud regime analysis shows that the Azores cloud distribution is similar to the mean global distribution and can therefore be used to evaluate cloud simulation in global models. Regime analysis of low clouds shows that stratocumulus decks occur under the influence of the Azores high pressure system, while shallow cumulus clouds are sustained by cold-air outbreaks, as revealed by their preference for postfrontal environments and northwesterly flows. An evaluation of climate model cloud regimes from phase 5 of CMIP (CMIP5) over the Azores shows that all models severely underpredict shallow cumulus clouds, while most models also underpredict the occurrence of stratocumulus cloud decks. It is demonstrated that the regime analysis can assist in the selection of case studies representing specific climatological cloud distributions. With all the tools now in place, a methodology is suggested to better understand cloud–dynamics interactions and attempt to explain and correct climate model cloud deficiencies.

Current affiliation: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York.

Corresponding author address: Jasmine Rémillard, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794-5000. E-mail: jasmine.remillard@mail.mcgill.ca

Abstract

From its location on the subtropics–midlatitude boundary, the Azores is influenced by both the subtropical high pressure and the midlatitude baroclinic storm regimes and therefore experiences a wide range of cloud structures, from fair-weather scenes to stratocumulus sheets and deep convective systems. This work combines three types of datasets to study cloud variability in the Azores: a satellite analysis of cloud regimes, a reanalysis characterization of storminess, and a 19-month field campaign that occurred on Graciosa Island. Combined analysis of the three datasets provides a detailed picture of cloud variability and the respective dynamic influences, with emphasis on low clouds that constitute a major uncertainty source in climate model simulations. The satellite cloud regime analysis shows that the Azores cloud distribution is similar to the mean global distribution and can therefore be used to evaluate cloud simulation in global models. Regime analysis of low clouds shows that stratocumulus decks occur under the influence of the Azores high pressure system, while shallow cumulus clouds are sustained by cold-air outbreaks, as revealed by their preference for postfrontal environments and northwesterly flows. An evaluation of climate model cloud regimes from phase 5 of CMIP (CMIP5) over the Azores shows that all models severely underpredict shallow cumulus clouds, while most models also underpredict the occurrence of stratocumulus cloud decks. It is demonstrated that the regime analysis can assist in the selection of case studies representing specific climatological cloud distributions. With all the tools now in place, a methodology is suggested to better understand cloud–dynamics interactions and attempt to explain and correct climate model cloud deficiencies.

Current affiliation: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York.

Corresponding author address: Jasmine Rémillard, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794-5000. E-mail: jasmine.remillard@mail.mcgill.ca
Save