• Bingham, R. J., , and C. W. Hughes, 2008: Determining North Atlantic meridional transport variability from pressure on the western boundary: A model investigation. J. Geophys. Res., 113, C09008, doi:10.1029/2007JC004679.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., , and L. Smith, 1990: A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments. J. Geophys. Res., 95, 32733285, doi:10.1029/JC095iC03p03273.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., , A. F. Fanning, , A. D. Goulding, , and S. Levitus, 1991: A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res., 96, 22 00922 023, doi:10.1029/91JC02423.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and et al. , 2010: The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn., 60, 771790, doi:10.1007/s10236-010-0292-4.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , and M. Meredith, 2006: Coherent sea-level fluctuations along the global continental slope. Philos. Trans. Roy. Soc. London, 364A, 885901, doi:10.1098/rsta.2006.1744.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., , S. Gulev, , and L. Yu, 2013: Exchange through the ocean surface. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 115–140.

  • Levitus, S., and et al. , 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett, 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., , S. Leadbetter, , R. G. Williams, , V. Roussenov, , M. S. C. Reed, , and N. J. Moore, 2008: The spatial pattern and mechanisms of heat-content change in the North Atlantic. Science, 319, 800803, doi:10.1126/science.1146436.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., , V. Roussenov, , M. S. C. Reed, , and R. G. Williams, 2010: Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat. Geosci., 3, 728734, doi:10.1038/ngeo947.

    • Search Google Scholar
    • Export Citation
  • Luyten, J., , J. Pedlosky, , and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, doi:10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J. R., , R. Giering, , K. Q. Zhang, , D. Stammer, , C. Hill, , and T. Lee, 1999: Construction of the MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104, 29 52929 547, doi:10.1029/1999JC900236.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , C. Hill, , L. Perelman, , and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and et al. , 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898, doi:10.1002/joc.693.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , C. R. Mechoso, , and E. Keto, 1982: A diagnostic calculation of the general circulation of the Atlantic Ocean. Deep-Sea Res., 29A, 11711192, doi:10.1016/0198-0149(82)90088-7.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., , F. Straneo, , and G. W. K. Moore, 2003: Is Labrador Sea Water formed in the Irminger basin? Deep-Sea Res. I, 50, 2352, doi:10.1016/S0967-0637(02)00134-6.

    • Search Google Scholar
    • Export Citation
  • Robson, J., , R. Sutton, , K. Lohmann, , D. Smith, , and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, doi:10.1175/JCLI-D-11-00443.1.

    • Search Google Scholar
    • Export Citation
  • Robson, J., , D. Hodson, , E. Hawkins, , and R. Sutton, 2014a: Atlantic overturning in decline? Nat. Geosci., 7, 23, doi:10.1038/ngeo2050.

  • Robson, J., , R. Sutton, , and D. Smith, 2014b: Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Climate Dyn., 42, 23532365, doi:10.1007/s00382-014-2115-7.

    • Search Google Scholar
    • Export Citation
  • Roussenov, V., , R. G. Williams, , C. W. Hughes, , and R. Bingham, 2008: Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. Geophys. Res. Lett, 113, C08042, doi:10.1029/2007JC004501.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , and J. M. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res., 112, C02022, doi:10.1029/2005JC003172.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , R. Eade, , N. J. Dunstone, , D. Fereday, , J. M. Murphy, , H. Pohlmann, , and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and et al. , 2015: Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett., 42, 12051213, doi:10.1002/2014GL062669.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36, 18221840, doi:10.1175/JPO2932.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 59, Academic Press, 464 pp.

  • Williams, R. G., , V. Roussenov, , D. Smith, , and M. S. Lozier, 2014: Decadal evolution of ocean thermal anomalies in the North Atlantic: The effects of Ekman, overturning, and horizontal transport. J. Climate, 27, 698719, doi:10.1175/JCLI-D-12-00234.1.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., , A. Karspeck, , G. Danabasoglu, , J. Tribbia, , and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, doi:10.1175/JCLI-D-11-00595.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 15
PDF Downloads 43 43 9

Mechanisms of Heat Content and Thermocline Change in the Subtropical and Subpolar North Atlantic

View More View Less
  • 1 University of Liverpool, Liverpool, United Kingdom
  • | 2 Duke University, Durham, North Carolina
  • | 3 Met Office Hadley Centre, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

In the North Atlantic, there are pronounced gyre-scale changes in ocean heat content on interannual-to-decadal time scales, which are associated with changes in both sea surface temperature and thermocline thickness; the subtropics are often warm with a thick thermocline when the subpolar gyre is cool with a thin thermocline, and vice versa. This climate variability is investigated using a semidiagnostic dynamical analysis of historical temperature and salinity data from 1962 to 2011 together with idealized isopycnic model experiments. On time scales of typically 5 yr, the tendencies in upper-ocean heat content are not simply explained by the area-averaged atmospheric forcing for each gyre but instead dominated by heat convergences associated with the meridional overturning circulation. In the subtropics, the most pronounced warming events are associated with an increased influx of tropical heat driven by stronger trade winds. In the subpolar gyre, the warming and cooling events are associated with changes in western boundary density, where increasing Labrador Sea density leads to an enhanced overturning and an influx of subtropical heat. Thus, upper-ocean heat content anomalies are formed in a different manner in the subtropical and subpolar gyres, with different components of the meridional overturning circulation probably excited by the local imprint of atmospheric forcing.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Richard G. Williams, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, 4 Brownlow Hill, Liverpool L69 3GP, United Kingdom. E-mail: ric@liv.ac.uk

Abstract

In the North Atlantic, there are pronounced gyre-scale changes in ocean heat content on interannual-to-decadal time scales, which are associated with changes in both sea surface temperature and thermocline thickness; the subtropics are often warm with a thick thermocline when the subpolar gyre is cool with a thin thermocline, and vice versa. This climate variability is investigated using a semidiagnostic dynamical analysis of historical temperature and salinity data from 1962 to 2011 together with idealized isopycnic model experiments. On time scales of typically 5 yr, the tendencies in upper-ocean heat content are not simply explained by the area-averaged atmospheric forcing for each gyre but instead dominated by heat convergences associated with the meridional overturning circulation. In the subtropics, the most pronounced warming events are associated with an increased influx of tropical heat driven by stronger trade winds. In the subpolar gyre, the warming and cooling events are associated with changes in western boundary density, where increasing Labrador Sea density leads to an enhanced overturning and an influx of subtropical heat. Thus, upper-ocean heat content anomalies are formed in a different manner in the subtropical and subpolar gyres, with different components of the meridional overturning circulation probably excited by the local imprint of atmospheric forcing.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Richard G. Williams, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, 4 Brownlow Hill, Liverpool L69 3GP, United Kingdom. E-mail: ric@liv.ac.uk
Save