• Ackerley, D., , B. B. B. Booth, , S. H. E. Knight, , E. J. Highwood, , D. J. Frame, , M. R. Allen, , and D. P. Rowell, 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J. Climate, 24, 49995014, doi:10.1175/JCLI-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and et al. , 2003a: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and et al. , 2003b: GPCP2.2: Global Precipitation Climatology Project version 2.2. NASA Goddard Space Flight Center. [Available online at http://precip.gsfc.nasa.gov/gpcp_v2.2_comb_new.html.]

  • Allen, R. J., , J. R. Norris, , and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width. Nat. Geosci., 7, 270274, doi:10.1038/ngeo2091.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., , Y. Ming, , and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and et al. , 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, doi:10.1002/jgrd.50171.

    • Search Google Scholar
    • Export Citation
  • Boo, K.-O., , B. B. B. Booth, , Y.-H. Byun, , J. Lee, , C. H. Cho, , S. B. Shim, , and K.-T. Kim, 2015: Influence of aerosols in multi-decadal SST variability simulations over the North Pacific. J. Geophys. Res. Atmos., 120, 517531, doi:10.1002/2014JD021933.

    • Search Google Scholar
    • Export Citation
  • Camberlin, P., , and N. Philippon, 2002: The East African March–May rainy season: Associated atmospheric dynamics and predictability over the 1968–97 period. J. Climate, 15, 10021019, doi:10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., , and P. Good, 2013: Understanding nonlinear tropical precipitation responses to CO2 forcing. Geophys. Res. Lett., 40, 49114915, doi:10.1002/grl.50932.

    • Search Google Scholar
    • Export Citation
  • Chase, T. N., , R. A. Pielke Sr., , T. G. F. Kittel, , R. R. Nemani, , and S. W. Running, 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dyn., 16, 93105, doi:10.1007/s003820050007.

    • Search Google Scholar
    • Export Citation
  • CMIP5 Modelling Groups, 2011: Coupled Model Intercomparison Project 5 (with subsequent updates). World Climate Research Programme's Working Group on Coupled Modelling, Earth System Grid Federation, accessed January 2014. [Available online at https://pcmdi9.llnl.gov/projects/cmip5/.]

  • Cox, P. M., and et al. , 2008: Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212215, doi:10.1038/nature06960.

    • Search Google Scholar
    • Export Citation
  • Dong, L., , and T. Zhou, 2014: The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: Competing forcing roles of GHGs and anthropogenic aerosols. J. Climate, 27, 33483362, doi:10.1175/JCLI-D-13-00396.1.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and et al. , 2014: Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci., 7, 709715, doi:10.1038/ngeo2248.

    • Search Google Scholar
    • Export Citation
  • Gao, C. C., , A. Robock, , and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., , L. R. Leung, , Y. Xue, , A. Boone, , F. de Sales, , N. Neupane, , M. Huang, , and J.-H. Yoon, 2014: Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model. Climate Dyn., 43, 27652775, doi:10.1007/s00382-014-2092-x.

    • Search Google Scholar
    • Export Citation
  • Harris, I., , P. D. Jones, , T. J. Osborn, , and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., , D. Polzin, , and C. Mutai, 2011: Circulation mechanisms of Kenya rainfall anomalies. J. Climate, 24, 404412, doi:10.1175/2010JCLI3599.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , M. Joshi, , and D. Frame, 2014: Wetter then drier in some tropical areas. Nat. Climate Change, 4, 646647, doi:10.1038/nclimate2299.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , T. L. Delworth, , J. Lu, , K. L. Findell, , and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, doi:10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Hillbruner, C., , and G. Moloney, 2012: When early warning is not enough—Lessons learned from the 2011 Somalia famine. Global Food Secur., 1, 2028, doi:10.1016/j.gfs.2012.08.001.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , and C. Funk, 2013: The ENSO-related West Pacific sea surface temperature gradient. J. Climate, 26, 95459562, doi:10.1175/JCLI-D-12-00344.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , and C. Funk, 2014: Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Climate Dyn., 43, 16451660, doi:10.1007/s00382-013-1991-6.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and et al. , 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , and P. Xie, 1999a: CAMS-OPI: A global satellite–rain gauge merged product for real-time precipitation monitoring applications. J. Climate, 12, 33353342, doi:10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , and P. Xie, 1999b: CAMS-OPI: Climate Anomaly Monitoring System outgoing longwave radiation precipitation index. NOAA/National Weather Service/Climate Prediction Center. [Available online at http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cams_opi.html.]

  • Kawase, H., , M. Abe, , Y. Yamada, , T. Takemura, , T. Yokohata, , and T. Nozawa, 2010: Physical mechanism of long‐term drying trend over tropical North Africa. Geophys. Res. Lett., 37, L09706, doi:10.1029/2010GL043038.

    • Search Google Scholar
    • Export Citation
  • Kent, C., , R. Chadwick, , and D. P. Rowell, 2015: Understanding uncertainties in future projections of seasonal tropical precipitation. J. Climate, 28, 43904413, doi:10.1175/JCLI-D-14-00613.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and et al. , 2014: Understanding recent eastern Horn of Africa rainfall variability and change. J. Climate, 27, 86308645, doi:10.1175/JCLI-D-13-00714.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F. C., , N. Christidis, , and P. A. Stott, 2013: Can the 2011 East African drought be attributed to human-induced climate change? Geophys. Res. Lett., 40, 11771181, doi:10.1002/grl.50235.

    • Search Google Scholar
    • Export Citation
  • Lu, Z., , Q. Zhang, , and D. G. And Streets, 2011: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos. Chem. Phys., 11, 98399864, doi:10.5194/acp-11-9839-2011.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., 2014: Seasonal drought in the greater Horn of Africa and its recent increase during the March–May long rains. J. Climate, 27, 79537975, doi:10.1175/JCLI-D-13-00459.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., , and D. G. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, doi:10.1029/2011GL050337.

    • Search Google Scholar
    • Export Citation
  • Mason, J. B., , J. M. White, , L. Heron, , J. Carter, , C. Wilkinson, , and P. Spiegel, 2012: Child acute malnutrition and mortality in populations affected by displacement in the Horn of Africa, 1997–2009. Int. J. Environ. Res. Public Health, 9, 791806, doi:10.3390/ijerph9030791.

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., , and C. J. Willmott, 2009: Terrestrial precipitation: 1900–2008 gridded monthly time series (version 2.01). Center for Climatic Research, University of Delaware. [Available online at http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009/README.global_p_ts_2009.html.]

  • Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. The Limnology, Climatology and Paleoclimatology of the East African Lakes, T. C. Johnson and E. Odada, Eds., Gordon and Breach, 25–56.

  • Nicholson, S. E., 2000: The nature of rainfall variability over Africa on time scales of decades to millennia. Global Planet. Change, 26, 137158, doi:10.1016/S0921-8181(00)00040-0.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2014: A detailed look at the recent drought situation in the Greater Horn of Africa. J. Arid Environ., 103, 7179, doi:10.1016/j.jaridenv.2013.12.003.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2015: Long-term variability of the East African “short rains” and its links to large-scale factors. Int. J. Climatol., 35, 39793990, doi:10.1002/joc.4259.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., , A. K. Dezfuli, , and D. Klotter, 2012: A two-century precipitation dataset for the continent of Africa. Bull. Amer. Meteor. Soc., 93, 12191231, doi:10.1175/BAMS-D-11-00212.1.

    • Search Google Scholar
    • Export Citation
  • Ogallo, L. J., , J. E. Janowiak, , and M. S. Halpert, 1988: Teleconnection between seasonal rainfall over East Africa and global sea surface temperature anomalies. J. Meteor. Soc. Japan, 66, 807822.

    • Search Google Scholar
    • Export Citation
  • Otieno, V. O., , and R. O. Anyah, 2012: Effects of land use changes on climate in the Greater Horn of Africa. Climate Res., 52, 7795, doi:10.3354/cr01050.

    • Search Google Scholar
    • Export Citation
  • Otieno, V. O., , and R. O. Anyah, 2013a: CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part 1: Contemporary climate. Climate Dyn., 41, 20812097, doi:10.1007/s00382-012-1549-z.

    • Search Google Scholar
    • Export Citation
  • Otieno, V. O., , and R. O. Anyah, 2013b: CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part II: Projected climate. Climate Dyn., 41, 20992113, doi:10.1007/s00382-013-1694-z.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2002: HadISST1.1: Hadley Centre Sea Ice and Sea Surface Temperature version 1.1. Met Office Hadley Centre. [Available online at http://www.metoffice.gov.uk/hadobs/hadisst/.]

  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2012: Sources of uncertainty in future changes in local precipitation. Climate Dyn., 39, 19291950, doi:10.1007/s00382-011-1210-2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2013: Simulating SST teleconnections to Africa: What is the state of the art? J. Climate, 26, 53975417, doi:10.1175/JCLI-D-12-00761.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , A. Becker, , P. Finger, , A. Meyer-Christoffer, , B. Rudolf, , and M. Ziese, 2011: GPCC full data reanalysis version 6 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. NOAA/Earth System Research Laboratory, doi:10.5676/DWD_GPCC/FD_M_V6_100.

  • Schneider, U., , A. Becker, , P. Finger, , A. Meyer-Christoffer, , B. Rudolf, , and M. Ziese, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Seto, K. C., , B. Guneralp, , and L. R. Hutyra, 2012: Global forecasts of urban expansion to 2030 and direct impacts of biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA, 109, 16 08316 088, doi:10.1073/pnas.1211658109.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and et al. , 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Shongwe, M. E., , G. J. van Oldenborgh, , and B. van den Hurk, 2011: Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J. Climate, 24, 37183733, doi:10.1175/2010JCLI2883.1.

    • Search Google Scholar
    • Export Citation
  • Tanarhte, M., , P. Hadjinicolaou, , and J. Lelieveld, 2012: Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. J. Geophys. Res., 117, D12102, doi:10.1029/2011JD017293.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, L., , and T. Andrews, 2014: The physical drivers of historical and 21st century global precipitation changes. Environ. Res. Lett., 9, doi:10.1088/1748-9326/9/6/064024.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , A. Dai, , G. van der Schrier, , P. D. Jones, , J. Barichivich, , K. R. Briffa, , and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, doi:10.1038/nclimate2067.

    • Search Google Scholar
    • Export Citation
  • Viste, E., , D. Korecha, , and A. Sorteberg, 2013: Recent drought and precipitation tendencies in Ethiopia. Theor. Appl. Climatol., 112, 535551, doi:10.1007/s00704-012-0746-3.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research.Cambridge University Press, 484 pp.

  • Williams, A. P., , and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dyn., 37, 24172435, doi:10.1007/s00382-010-0984-y.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., , A. Jones, , D. L. Roberts, , C. A. Senior, , and M. J. Woodage, 2001: The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Climate Dyn., 17, 845856, doi:10.1007/s003820100150.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997a: Global precipitation 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997b: CMAP: Climate Prediction Center Merged Analysis of Precipitation. NOAA/National Weather Service Climate Prediction Center. [Available online at http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cmap.html.]

  • Yang, W., , R. Seager, , and M. A. Cane, 2014: The East African long rains in observations and models. J. Climate, 27, 71857202, doi:10.1175/JCLI-D-13-00447.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 578 578 89
PDF Downloads 329 329 35

Reconciling Past and Future Rainfall Trends over East Africa

View More View Less
  • 1 Met Office Hadley Centre, Exeter, United Kingdom
  • | 2 Department of Meteorology, The Florida State University, Tallahassee, Florida
  • | 3 Met Office Hadley Centre, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

The “long rains” season of East Africa has recently experienced a series of devastating droughts, whereas the majority of climate models predict increasing rainfall for the coming decades. This has been termed the East African climate paradox and has implications for developing viable adaptation policies. A logical framework is adopted that leads to six key hypotheses that could explain this paradox. The first hypothesis that the recent observed trend is due to poor quality data is promptly rejected. An initial judgment on the second hypothesis that the projected trend is founded on poor modeling is beyond the scope of a single study. Analysis of a natural variability hypothesis suggests this is unlikely to have been the dominant driver of recent droughts, although it may have contributed. The next two hypotheses explore whether the balance between competing forcings could be changing. Regarding the possibility that the past trend could be due to changing anthropogenic aerosol emissions, the results of sensitivity experiments are highly model dependent, but some show a significant impact on the patterns of tropical SST trends, aspects of which likely caused the recent long rains droughts. Further experiments suggest land-use changes are unlikely to have caused the recent droughts. The last hypothesis that the response to CO2 emissions is nonlinear explains no more than 10% of the contrast between recent and projected trends. In conclusion, it is recommended that research priorities now focus on providing a process-based expert judgment of the reliability of East Africa projections, improving the modeling of aerosol impacts on rainfall, and better understanding the relevant natural variability.

Denotes Open Access content.

Corresponding author address: David P Rowell, Met Office Hadley Centre, Fitzroy Road, Exeter EX1 2NX, United Kingdom. E-mail: dave.rowell@metoffice.gov.uk

Abstract

The “long rains” season of East Africa has recently experienced a series of devastating droughts, whereas the majority of climate models predict increasing rainfall for the coming decades. This has been termed the East African climate paradox and has implications for developing viable adaptation policies. A logical framework is adopted that leads to six key hypotheses that could explain this paradox. The first hypothesis that the recent observed trend is due to poor quality data is promptly rejected. An initial judgment on the second hypothesis that the projected trend is founded on poor modeling is beyond the scope of a single study. Analysis of a natural variability hypothesis suggests this is unlikely to have been the dominant driver of recent droughts, although it may have contributed. The next two hypotheses explore whether the balance between competing forcings could be changing. Regarding the possibility that the past trend could be due to changing anthropogenic aerosol emissions, the results of sensitivity experiments are highly model dependent, but some show a significant impact on the patterns of tropical SST trends, aspects of which likely caused the recent long rains droughts. Further experiments suggest land-use changes are unlikely to have caused the recent droughts. The last hypothesis that the response to CO2 emissions is nonlinear explains no more than 10% of the contrast between recent and projected trends. In conclusion, it is recommended that research priorities now focus on providing a process-based expert judgment of the reliability of East Africa projections, improving the modeling of aerosol impacts on rainfall, and better understanding the relevant natural variability.

Denotes Open Access content.

Corresponding author address: David P Rowell, Met Office Hadley Centre, Fitzroy Road, Exeter EX1 2NX, United Kingdom. E-mail: dave.rowell@metoffice.gov.uk
Save