• Ablain, M., and et al. , 2014: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative Project. Ocean Sci. Discuss., 11, 20292071, doi:10.5194/osd-11-2029-2014.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., and et al. , 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., , J. M. Gregory, , M. J. Webb, , and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Bouttes, N., , J. M. Gregory, , and J. A. Lowe, 2013: The reversibility of sea level rise. J. Climate, 26, 25022513, doi:10.1175/JCLI-D-12-00285.1.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., 1973: New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Res., 20, 401408.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., , H.-B. Dieng, , B. Meyssignac, , K. von Shuckmann, , B. Decharme, , and E. Berthier, 2014: The rate of sea-level rise. Nat. Climate Change, 4, 358361, doi:10.1038/nclimate2159.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., , N. J. White, , and J. Arblaster, 2005: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438, 7477, doi:10.1038/nature04237.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and et al. , 2011: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and et al. , 2013a: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Cambridge University Press, 1137–1216. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter13_FINAL.pdf.]

  • Church, J. A., , D. Monselesan, , J. M. Gregory, , and B. Marzeion, 2013b: Evaluating the ability of process based models to project sea-level change. Environ. Res. Lett., 8, 014051, doi:10.1088/1748-9326/8/1/014051.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Cambridge University Press, 1029–1136.

  • Collins, W. D., and et al. , 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, doi:10.1029/2005JD006713.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , V. Ramaswamy, , and G. L. Stenchikov, 2005: The impact of aerosols on simulated global ocean temperature and heat content in the 20th century. Geophys. Res. Lett., 32, L24709, doi:10.1029/2005GL024457.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., , J. A. Church, , N. J. White, , P. J. Gleckler, , S. E. Wijffels, , P. M. Barker, , and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, doi:10.1038/nature07080.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , P. J. Gleckler, , F. W. Landerer, , and K. E. Taylor, 2014: Quantifying underestimates of long-term upper-ocean warming. Nat. Climate Change, 4, 9991005, doi:10.1038/nclimate2389.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., , T. Andrews, , P. Good, , J. M. Gregory, , L. S. Jackson, , and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2010: Long-term effect of volcanic forcing on ocean heat content. Geophys. Res. Lett., 37, L22701, doi:10.1029/2010GL045507.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and et al. , 2013a: Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion. Geophys. Res. Lett., 40, 16001604, doi:10.1002/grl.50339.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and et al. , 2013b: Twentieth-century global-mean sea-level rise: Is the whole greater than the sum of the parts? J. Climate, 26, 44764499, doi:10.1175/JCLI-D-12-00319.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , and M. J. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, doi:10.1175/2007JCLI1834.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and et al. , 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , J. A. Lowe, , and S. F. B. Tett, 2006: Simulated global-mean sea level changes over the last half-millennium. J. Climate, 19, 45764591, doi:10.1175/JCLI3881.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. W., , A. Adcroft, , J. P. Dunne, , J. P. Krasting, , and R. J. Stouffer, 2013: Sensitivity of twenty-first-century global-mean steric sea level rise to ocean model formulation. J. Climate, 26, 29472956, doi:10.1175/JCLI-D-12-00506.1.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., , and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Phys. Oceanogr., 65, 287299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., , and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, doi:10.1029/2012GL052952.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , J. I. Antonov, , and T. P. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , J. I. Antonov, , T. P. Boyer, , R. A. Locarnini, , H. E. Garcia, , and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and et al. , 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Llovel, W., , I. Fukumori, , and B. Meyssignac, 2013: Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010. Global Planet. Change, 101, 113118, doi:10.1016/j.gloplacha.2012.12.011.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and et al. , 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., , and D. McNeall, 2014: Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett., 9, 034016, doi:10.1088/1748-9326/9/3/034016.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., , and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., , V. Gornitz, , and J. R. Miller, 2000: Regional sea-level changes projected by the NASA/GISS atmosphere-ocean model. Climate Dyn., 16, 789797, doi:10.1007/s003820000090.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , N. C. Jourdain, , J. N. Brown, , and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, doi:10.1175/JCLI-D-12-00521.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Webb, M., and et al. , 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Wong, P., , I. J. Losada, , J. P. Gattuso, , J. Hinkel, , A. Khattabi, , K. L. McInnes, , Y. Saito, , and A. Sallenger, 2013: Coastal systems and low-lying areas. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 361–409. [Available online at https://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap5_FINAL.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 13
PDF Downloads 59 59 8

Explaining the Spread in Global Mean Thermosteric Sea Level Rise in CMIP5 Climate Models

View More View Less
  • 1 LEGOS/CNRS/CNES/IRD, Université Paul Sabatier, Toulouse, France
© Get Permissions
Restricted access

Abstract

The ocean stores more than 90% of the energy excess associated with anthropogenic climate change. The resulting ocean warming and thermal expansion are leading contributors to global mean sea level (GMSL) rise. Confidence in projections of GMSL rise therefore depends on the ability of climate models to reproduce global mean thermosteric sea level (GMTSL) rise over the twentieth century. This study first compares the GMTSL of the climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to observations over 1961–2005. Although the model ensemble mean is within the uncertainty of observations, the model ensemble exhibits a large spread. The authors then aim to explain the spread in CMIP5 climate model GMTSL over the twentieth and twenty-first centuries. It is shown that the climate models’ GMTSL rise depends linearly on the time-integrated radiative forcing F (under continuously increasing radiative forcing). The constant of proportionality μ expresses the transient thermosteric sea level response of the climate system, and it depends on the fraction of excess heat stored in the ocean, the expansion efficiency of heat, the climate feedback parameter, and the ocean heat uptake efficiency. The across-model spread in μ explains most (>70%) of the across-model spread in GMTSL rise over the twentieth and twenty-first centuries, while the across-model spread in time-integrated F explains the rest. The time-integrated F explains less variance in the across-model GMTSL rise in twenty-first-century than in twentieth-century simulations, as the spread in F is reduced over the twenty-first century because the anthropogenic aerosol forcing, which is a large source of uncertainty in F, becomes relatively smaller.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0200.s1.

Corresponding author address: Angélique Melet, Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: angelique.melet@legos.obs-mip.fr

Abstract

The ocean stores more than 90% of the energy excess associated with anthropogenic climate change. The resulting ocean warming and thermal expansion are leading contributors to global mean sea level (GMSL) rise. Confidence in projections of GMSL rise therefore depends on the ability of climate models to reproduce global mean thermosteric sea level (GMTSL) rise over the twentieth century. This study first compares the GMTSL of the climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to observations over 1961–2005. Although the model ensemble mean is within the uncertainty of observations, the model ensemble exhibits a large spread. The authors then aim to explain the spread in CMIP5 climate model GMTSL over the twentieth and twenty-first centuries. It is shown that the climate models’ GMTSL rise depends linearly on the time-integrated radiative forcing F (under continuously increasing radiative forcing). The constant of proportionality μ expresses the transient thermosteric sea level response of the climate system, and it depends on the fraction of excess heat stored in the ocean, the expansion efficiency of heat, the climate feedback parameter, and the ocean heat uptake efficiency. The across-model spread in μ explains most (>70%) of the across-model spread in GMTSL rise over the twentieth and twenty-first centuries, while the across-model spread in time-integrated F explains the rest. The time-integrated F explains less variance in the across-model GMTSL rise in twenty-first-century than in twentieth-century simulations, as the spread in F is reduced over the twenty-first century because the anthropogenic aerosol forcing, which is a large source of uncertainty in F, becomes relatively smaller.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0200.s1.

Corresponding author address: Angélique Melet, Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: angelique.melet@legos.obs-mip.fr

Supplementary Materials

    • Supplemental Materials (PDF 797.53 KB)
Save