• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., , D. Rosenfeld, , P. Artaxo, , A. A. Costa, , G. P. Frank, , K. M. Longo, , and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and R. M. Dole, 1993: The dynamics of large-scale cyclogenesis over the North Pacific Ocean. J. Atmos. Sci., 50, 421442, doi:10.1175/1520-0469(1993)050<0421:TDOLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carrio, G. G., , and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 25572567, doi:10.5194/acp-11-2557-2011.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , S. Lee, , and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chin, M., , A. Chu, , R. Levy, , L. Remer, , Y. Kaufman, , B. Holben, , T. Eck, , P. Ginoux, , and Q. Gao, 2004: Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and sun photometer measurements. J. Geophys. Res., 109, D23S90, doi:10.1029/2004JD004829.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , H. Zhang, , G. M. McFarquhar, , and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Modif., 39, 7073.

    • Search Google Scholar
    • Export Citation
  • Deng, Y., , and M. Mak, 2005: An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track. J. Atmos. Sci., 62, 12091225, doi:10.1175/JAS3400.1.

    • Search Google Scholar
    • Export Citation
  • Deng, Y., , and M. Mak, 2006: Nature of the differences in the intraseasonal variability of the Pacific and Atlantic storm tracks: A diagnostic study. J. Atmos. Sci., 63, 26022615, doi:10.1175/JAS3749.1.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , R. Zhang, , W.-K. Tao, , and K. I. Mohr, 2008: Effects of aerosol optical properties on deep convective clouds and radiative forcing. J. Geophys. Res., 113, D08209, doi:10.1029/2007JD009257.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , L. R. Leung, , and D. Rosenfeld, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, doi:10.1073/pnas.1316830110.

    • Search Google Scholar
    • Export Citation
  • Huebert, B. J., , T. Bates, , P. B. Russell, , G. Shi, , Y. J. Kim, , K. Kawamura, , G. Carmichael, , and T. Nakajima, 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 108, 8633, doi:10.1029/2003JD003550.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., , S. C. van den Heever, , C. M. Naud, , S. M. Saleeby, , and D. J. Posselt, 2013: Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci., 70, 17681783, doi:10.1175/JAS-D-12-0170.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, T., , Y. Deng, , and W. Li, 2013: Local kinetic energy budget of high-frequency and intermediate-frequency eddies: Winter climatology and interannual variability. Climate Dyn., 41, 961976, doi:10.1007/s00382-013-1684-1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , and A. Pokrovsky, 2001: Simulating convective clouds with sustained supercooled liquid water down to −37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28, 38873890, doi:10.1029/2000GL012662.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , A. Pokrovsky, , M. Pinsky, , A. Seifert, , and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , N. BenMoshe, , and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1972: On a generalized potential vorticity equation for quasi-geostrophic flow. Pure Appl. Geophys., 96, 171175, doi:10.1007/BF00875640.

    • Search Google Scholar
    • Export Citation
  • Li, G., , Y. Wang, , and R. Zhang, 2008: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J. Geophys. Res., 113, D15211, doi:10.1029/2007JD009361.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and et al. , 2011: East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. J. Geophys. Res., 116, D00K34, doi:10.1029/2010JD015257.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., , A. P. Khain, , J. Dudhia, , D. Rosenfeld, , A. Pokrovsky, , and A. Seifert, 2005: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133, 4458, doi:10.1175/MWR-2840.1.

    • Search Google Scholar
    • Export Citation
  • Mak, M., , and Y. Deng, 2007: Diagnostic and dynamical analyses of two outstanding aspects of storm tracks. Dyn. Atmos. Oceans, 43, 8099, doi:10.1016/j.dynatmoce.2006.06.004.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , K. L. Smith, , P. A. O’Gorman, , and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 59185933, doi:10.1175/JCLI3931.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782, doi:10.1007/s00703-005-0113-3.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705, doi:10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., , and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850, doi:10.1175/JAM2492.1.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., , G. G. Carrió, , W. R. Cotton, , P. J. DeMott, , and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, doi:10.1175/JAS3713.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , A. Khalizov, , M. Levy, , and R. Zhang, 2013: New directions: Light absorbing aerosols and their atmospheric impacts. Atmos. Environ., 81, 713715, doi:10.1016/j.atmosenv.2013.09.034.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , K.-H. Lee, , Y. Lin, , M. Levy, , and R. Zhang, 2014a: Distinct effects of anthropogenic aerosols on tropical cyclones. Nat. Climate Change, 4, 368373, doi:10.1038/nclimate2144.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and et al. , 2014b: Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model. Proc. Natl. Acad. Sci. USA, 111, 68946899, doi:10.1073/pnas.1403364111.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , G. M. McFarquhar, , S. M. Saleeby, , and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, doi:10.1029/2007GL029876.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , G. M. McFarquhar, , W. R. Cotton, , and Y. Deng, 2009: Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett., 36, L06802, doi:10.1029/2009GL037276.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , G. Li, , J. Fan, , D. L. Wu, , and M. J. Molina, 2007: Intensification of Pacific storm track linked to Asian pollution. Proc. Natl. Acad. Sci. USA, 104, 52955299, doi:10.1073/pnas.0700618104.

    • Search Google Scholar
    • Export Citation
  • Zhou, R., , and Y. Deng, 2013: A model analysis of the interactions between East Asian anthropogenic aerosols and North Pacific atmospheric transients in boreal winter. J. Geophys. Res. Atmos., 118, 306316, doi:10.1029/2012JD018649.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 2
PDF Downloads 8 8 0

Initial Transient Response of an Intensifying Baroclinic Wave to Increases in Cloud Droplet Number Concentration

View More View Less
  • 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
© Get Permissions
Restricted access

Abstract

Ensemble simulations of an idealized baroclinic wave were conducted with the WRF Model to investigate the effects of increased cloud droplet number concentration (DNC) on the development of the wave. Statistically significant differences between experiments where the DNC was doubled and the control experiments were identified for an initial transient period before the cyclone enters the stage of rapid intensification. Doubling of the DNC increases total cloud water in the model, lowers the cloud level, and enhances latent heating to the east of the surface low, which strengthens the midtropospheric ridge. Subsequent changes in dry dynamical processes [e.g., advection of potential vorticity (PV)] as a result of the ridge strengthening lead to the deepening of the trough and ultimately produce a mild yet statistically significant strengthening of the baroclinic wave as a result of the DNC doubling. Piecewise PV inversion further confirms the critical role that latent heating change plays in strengthening the midtropospheric ridge. Also discussed are the distinctions between aerosol–tropical cyclone interaction and aerosol–extratropical cyclone interaction.

Corresponding author address: Yi Lu, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0340. E-mail: yi.lu@eas.gatech.edu

Abstract

Ensemble simulations of an idealized baroclinic wave were conducted with the WRF Model to investigate the effects of increased cloud droplet number concentration (DNC) on the development of the wave. Statistically significant differences between experiments where the DNC was doubled and the control experiments were identified for an initial transient period before the cyclone enters the stage of rapid intensification. Doubling of the DNC increases total cloud water in the model, lowers the cloud level, and enhances latent heating to the east of the surface low, which strengthens the midtropospheric ridge. Subsequent changes in dry dynamical processes [e.g., advection of potential vorticity (PV)] as a result of the ridge strengthening lead to the deepening of the trough and ultimately produce a mild yet statistically significant strengthening of the baroclinic wave as a result of the DNC doubling. Piecewise PV inversion further confirms the critical role that latent heating change plays in strengthening the midtropospheric ridge. Also discussed are the distinctions between aerosol–tropical cyclone interaction and aerosol–extratropical cyclone interaction.

Corresponding author address: Yi Lu, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0340. E-mail: yi.lu@eas.gatech.edu
Save