• Bassill, N. P., 2014: Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization. Geophys. Res. Lett., 41, 32743281, doi:10.1002/2014GL059839.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , H. Bottger, , and M. Kanamitsu, 1982: Simulation of hurricane-type vortices in a general circulation model. Tellus, 34A, 440457, doi:10.1111/j.2153-3490.1982.tb01833.x.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , M. Botzet, , and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175196, doi:10.1034/j.1600-0870.1995.t01-1-00003.x.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and M. Esch, 2007: How tropical cyclones may change in a warmer climate? Tellus, 59A, 539561, doi:10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , J. R. McCaa, , and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 19171920, doi:10.1029/GL017i011p01917.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C.-L., 1984: An observational study of the physical processes responsible for tropical cyclone motion. J. Atmos. Sci., 41, 10361048, doi:10.1175/1520-0469(1984)041<1036:AOSOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , K. L. Corbosiero, , and H.-C. Kuo, 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 17641778, doi:10.1175/2008JAS2874.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and et al. , 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Goswami, P., , and G. N. Mohapatra, 2014: A comparative evaluation of impact of domain size and parameterization scheme on simulation of tropical cyclones in the Bay of Bengal. J. Geophys. Res., 119, 1022, doi:10.1002/2013JD020592.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , R. Kershaw, , and P. M. Inness, 1997: Parametrization of momentum transport by convection. 2. Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183, doi:10.1002/qj.49712354103.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., , J. F. B. Mitchell, , and C. A. Senior, 1992: Tropical disturbances in a GCM. Climate Dyn., 8, 247257.

  • Hogan, T. F., , and R. L. Pauley, 2007: The impact of convective momentum transport on tropical cyclone track forecasts using the Emanuel cumulus parameterization. Mon. Wea. Rev., 135, 11951207, doi:10.1175/MWR3365.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Clouds and precipitation in tropical cyclones. Cloud Dynamics, 2nd ed. Academic Press, 287–327.

  • Jablonowski, C., , and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 29432975, doi:10.1256/qj.06.12.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , and M. Miller, 2003: Parameterization of physical processes—Clouds. Encyclopedia of Atmospheric Sciences, Academic Press, 1692–1698.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , S. K. Gulev, , I. Rudeva, , and V. Soloviov, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132, 18391857, doi:10.1256/qj.05.212.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. H. Sobel, , A. D. Del Genio, , Y. Chen, , S. J. Camargo, , M.-S. Yao, , M. Kelley, , and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Oosterhof, 1989: Prediction of the life cycle of a super typhoon with a high-resolution global model. Bull. Amer. Meteor. Soc., 70, 12181230, doi:10.1175/1520-0477(1989)070<1218:POTLCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, Y. K., , S. D. Schubert, , O. Reale, , M.-I. Lee, , A. M. Molod, , and M. J. Suarez, 2015: Sensitivity of tropical cyclones to parameterized convection in the NASA GEOS-5 Model. J. Climate, 28, 551573, doi:10.1175/JCLI-D-14-00104.1.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., , W. C. Chao, , and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci., 39, 104113, doi:10.1175/1520-0469(1982)039<0104:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., , H. E. Willoughby, , and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , J. L. Holloway, , and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580613, doi:10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , R. Mizuta, , and E. Shindo, 2012a: Future changes in tropical cyclone activity project by multi-physics and multi-SST ensemble experiments using 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, doi:10.1007/s00382-011-1223-x.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and et al. , 2012b: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , M. Sugi, , and A. Kitoh, 2013: Future changes in tropical cyclone activity in the north Indian Ocean projected by high-resolution MRI-AGCMs. Climate Dyn., 40, 19491968, doi:10.1007/s00382-012-1407-z.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp.

  • Park, S., , and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., , C. S. Bretherton, , and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, doi:10.1175/JCLI-D-14-00087.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , R. K. Scott, , and S. J. Thomas, 2004: Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev., 132, 25392552, doi:10.1175/MWR2788.1.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., and et al. , 2015: Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. J. Adv. Model. Earth Syst., 7, 382411, doi:10.1002/2014MS000354.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and A. M. Blyth, 1986: A stochastic mixing model for non-precipitating cumulus clouds. J. Atmos. Sci., 43, 27082718, doi:10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49, 19681983, doi:10.1175/1520-0469(1992)049<1968:EOTSMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and C. Jablonowski, 2011a: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689710, doi:10.1175/2010MWR3488.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and C. Jablonowski, 2011b: Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model. Geophys. Res. Lett., 38, L04805, doi:10.1029/2010GL046297.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and C. Jablonowski, 2011c: Assessing the uncertainty of tropical cyclone simulations in NCAR’s Community Atmosphere Model. J. Adv. Model. Earth Syst., 3, M08002, doi:10.1029/2011MS000076.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, doi:10.1029/2011MS000099.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, doi:10.1175/2007JCLI1789.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanger, N. T., , M. T. Montgomery, , R. K. Smith, , and M. M. Bell, 2014: An observational study of tropical cyclone spinup in Supertyphoon Jangmi (2008) from 24 to 27 September. Mon. Wea. Rev., 142, 328, doi:10.1175/MWR-D-12-00306.1.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., , R. Atlas, , O. Reale, , S.-J. Lin, , J.-D. Chern, , J. Chang, , C. Henze, , and J.-L. Li, 2006: Hurricane forecasts with a global mesoscale-resolving model: Preliminary results with Hurricane Katrina (2005). Geophys. Res. Lett., 33, L13813, doi:10.1029/2006GL026143.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 488 pp.

  • Sun, Y., , Z. Zhong, , W. Lu, , and Y. Hu, 2014: Why are tropical cyclone tracks over the western North Pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon. Wea. Rev., 142, 12401249, doi:10.1175/MWR-D-13-00232.1.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. Physically-Based Modeling and Simulation of Climate and Climate Change, Vol. 1, M. E. Schlesinger, Ed., Kluwer Academic, 433–461.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197, doi:10.1175/MWR-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and et al. , 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, doi:10.1175/BAMS-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, doi:10.1175/JAS-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., , and N.-C. Lau, 1992: A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Wea. Rev., 120, 958977, doi:10.1175/1520-0493(1992)120<0958:AGSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., and et al. , 2015: Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524535, doi:10.1175/MWR-D-14-00227.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., , and M. Satoh, 2013: Response of ice and liquid water paths of tropical cyclones to global warming simulated by a global nonhydrostatic model with explicit cloud microphysics. J. Climate, 26, 99319945, doi:10.1175/JCLI-D-13-00182.1.

    • Search Google Scholar
    • Export Citation
  • Yang, B., and et al. , 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang–McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res., 118, 395415, doi:10.1029/2012JD018213.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., , R. McTaggart-Cowan, , P. A. Vaillancourt, , M. Roch, , S. Bélair, , and A.-M. Leduc, 2014: Evaluation of tropical cyclones in the Canadian Global Modeling System: Sensitivity to moist process parameterization. Mon. Wea. Rev., 142, 11971220, doi:10.1175/MWR-D-13-00124.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., , and C. Jablonowski, 2015: Experimental tropical cyclone forecasts using a variable-resolution global model. Mon. Wea. Rev., 143, 4012–4037, doi:10.1175/MWR-D-15-0159.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., , C. Jablonowski, , and M. A. Taylor, 2014: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, doi:10.1175/MWR-D-13-00179.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center General Circulation Model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and et al. , 2012: Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys. Res. Lett., 39, L14708, doi:10.1029/2012GL052184.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., 2014: An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model. J. Climate, 27, 18451862, doi:10.1175/JCLI-D-13-00145.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, doi:10.1175/2010JCLI3837.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Climate, 25, 29953009, doi:10.1175/JCLI-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283, doi:10.1175/JAS-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, M. H., , E. K. M. Chang, , and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, doi:10.1175/WAF-D-12-00132.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 11
PDF Downloads 54 54 8

Impact of Parameterized Physical Processes on Simulated Tropical Cyclone Characteristics in the Community Atmosphere Model

View More View Less
  • 1 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
© Get Permissions
Restricted access

Abstract

This study advances the understanding of how parameterized physical processes affect the development of tropical cyclones (TCs) in the Community Atmosphere Model (CAM) using the Reed–Jablonowski TC test case. It examines the impact of changes in 24 parameters across multiple physical parameterization schemes that represent convection, turbulence, precipitation, and cloud processes. The one-at-a-time (OAT) sensitivity analysis method quantifies the relative influence of each parameter on TC simulations and identifies which parameters affect six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP), and ice water path (IWP). It is shown that TC intensity is mainly sensitive to the parcel fractional mass entrainment rate (dmpdz) in deep convection. A decrease in this parameter can lead to a change in simulated intensity from a tropical depression to a category-4 storm. Precipitation and SWCF are strongly affected by three parameters in deep convection: tau (time scale for consumption rate of convective available potential energy), dmpdz, and C0_ocn (precipitation coefficient). Changes in physical parameters generally do not affect LWCF much. In contrast, LWP and IWP are very sensitive to changes in C0_ocn. The changes can be as large as 10 (5) times the control mean value for LWP (IWP). Further examination of the response functions for the subset of most sensitive parameters reveals nonlinear relationships between parameters and most output variables, suggesting that linear perturbation analysis may produce misleading results when applied to strongly nonlinear systems.

Corresponding author address: Fei He, Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: hefei@umich.edu

Abstract

This study advances the understanding of how parameterized physical processes affect the development of tropical cyclones (TCs) in the Community Atmosphere Model (CAM) using the Reed–Jablonowski TC test case. It examines the impact of changes in 24 parameters across multiple physical parameterization schemes that represent convection, turbulence, precipitation, and cloud processes. The one-at-a-time (OAT) sensitivity analysis method quantifies the relative influence of each parameter on TC simulations and identifies which parameters affect six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP), and ice water path (IWP). It is shown that TC intensity is mainly sensitive to the parcel fractional mass entrainment rate (dmpdz) in deep convection. A decrease in this parameter can lead to a change in simulated intensity from a tropical depression to a category-4 storm. Precipitation and SWCF are strongly affected by three parameters in deep convection: tau (time scale for consumption rate of convective available potential energy), dmpdz, and C0_ocn (precipitation coefficient). Changes in physical parameters generally do not affect LWCF much. In contrast, LWP and IWP are very sensitive to changes in C0_ocn. The changes can be as large as 10 (5) times the control mean value for LWP (IWP). Further examination of the response functions for the subset of most sensitive parameters reveals nonlinear relationships between parameters and most output variables, suggesting that linear perturbation analysis may produce misleading results when applied to strongly nonlinear systems.

Corresponding author address: Fei He, Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: hefei@umich.edu
Save