• Boyer, T. P., and et al. , 2006: World Ocean Database 2005. NOAA Atlas NESDIS 60, 190 pp.

  • Dai, A., , and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , T. Qian, , K. E. Trenberth, , and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792, doi:10.1175/2008JCLI2592.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , S. E. Wijffels, , and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455–458, doi:10.1126/science.1212222.

  • Evans, D. G., , J. D. Zika, , A. C. Naveira Garabato, , and A. Nurser, 2014: The imprint of Southern Ocean overturning on seasonal water mass variability in Drake Passage. J. Geophys. Res. Oceans, 119, 79878010, doi:10.1002/2014JC010097.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., , J. D. Zika, , T. J. McDougall, , B. M. Sloyan, , and F. Laliberté, 2014: The representation of ocean circulation and variability in thermodynamic coordinates. J. Phys. Oceanogr., 44, 17351750, doi:10.1175/JPO-D-13-0213.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Helm, K. P., , N. L. Bindoff, , and J. A. Church, 2010: Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett., 37, L18701, doi:10.1029/2010GL044222.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., , J. Nilsson, , and J. Nycander, 2014: Water mass transformation in salinity–temperature space. J. Phys. Oceanogr., 44, 25472568, doi:10.1175/JPO-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., , T. Suga, , N. Shikama, , and K. Mizuno, 2009: Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr., 65, 579586, doi:10.1007/s10872-009-0049-1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Ingleby, B., , and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158175, doi:10.1016/j.jmarsys.2005.11.019.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., , S. Gulev, , and L. Yu, 2013: Exchanges through the ocean surface. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 115–140.

  • Large, W., , and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., , D. R. Jackett, , and F. J. Millero, 2009: An algorithm for estimating absolute salinity in the global ocean. Ocean Sci. Discuss., 6, 215242, doi:10.5194/osd-6-215-2009.

    • Search Google Scholar
    • Export Citation
  • Mudryk, L., , P. Kushner, , and C. Derksen, 2014: Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations. Climate Dyn., 43, 345359, doi:10.1007/s00382-013-1954-y.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and H. A. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Schanze, J. J., , R. W. Schmitt, , and L. Yu, 2010: The global oceanic freshwater cycle: A state-of-the-art quantification. J. Mar. Res., 68, 569595, doi:10.1357/002224010794657164.

    • Search Google Scholar
    • Export Citation
  • Skliris, N., , R. Marsh, , S. A. Josey, , S. A. Good, , C. Liu, , and R. P. Allan, 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dyn., 43, 709736, doi:10.1007/s00382-014-2131-7.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , L. Smith, , T. Qian, , A. Dai, , and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. T. Fasullo, , and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1977: A theoretical framework for the description of estuaries. Tellus, 29A, 128136, doi:10.1111/j.2153-3490.1977.tb00716.x.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Wilson, J., 1998: Global Temperature-Salinity Profile Programme (GTSPP)—Overview and future. Intergovernmental Oceanographic Commission Tech. Doc. 49, 33 pp. [Available online at http://unesdoc.unesco.org/images/0011/001139/113964Eo.pdf.]

  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., , M. H. England, , and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, doi:10.1175/JPO-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 158 158 34
PDF Downloads 88 88 20

Maintenance and Broadening of the Ocean’s Salinity Distribution by the Water Cycle

View More View Less
  • 1 National Oceanography Centre, University of Southampton, Southampton, United Kingdom
  • | 2 National Oceanography Centre, Southampton, United Kingdom
  • | 3 Department of Physics, University of Toronto, Toronto, Canada
  • | 4 National Oceanography Centre, University of Southampton, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle.

Corresponding author address: Jan D. Zika, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom. E-mail: j.d.zika@soton.ac.uk

Abstract

The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle.

Corresponding author address: Jan D. Zika, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom. E-mail: j.d.zika@soton.ac.uk
Save